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Abstract. Many problems in fluid mechanics can be greatly simplified if, for every

point in space, the strain-rate tensor is diagonalized. This tensor is introduced into

the Navier-Stokes equations via the constitutive equation and divergence of the stress

tensor. This article shows that local SO(3) × U(1) gauge fields can be used to

locally diagonalize the diffusion components of the strain-rate tensor. The gauge fields

resulting from the connection can be interpreted as convection components of the flow,

which show properties of quasiparticles and can be understood as elementary vortices.

Thus, the proposed approach not only offers new insights for the solution and situative

simplification of the Navier-Stokes equations, but also uncovers hidden symmetries

within the flow convection, allowing – depending on boundary conditions – further

physical interpretation.

Keywords: fundamental fluid mechanics, turbulence, gauge theories and their

applications

1 Introduction

1.1 Idea and procedure

The basic idea of the approach presented is to find the eigensystem of a fluid’s strain-

rate tensor in all space. The problem: In turbulent flow, the eigensystem may be

different at every position, as illustrated in Fig. 1.

Thus, to diagonalize the strain-rate tensor everywhere, a theory is needed that

allows to perform an individual coordinate transformation for every point. Because

coordinate transformations between Euclidean bases in R3 are represented by rotations,

a theory that can replace a fixed rotation R ∈ SO(3) with a rotation field R(r) with

location dependency is suitable for the job.
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Figure 1. Illustrative look at a turbulent flow (black arrows): The strain-rate tensor

is diagonalized respective to its eigensystem, which is different in points A and B.

However, the transformation from eigensystem {ei} to {e′j} is a rotation R with

e′j =
∑

i eiR
i
j (gray dashed arrow). The local gauge field approach allows to stay in

both eigensystems while separating the information on the connecting transformation

into the gauge fields.

With this idea in mind, the local gauge field theory of the rotation group SO(3) is

introduced: As a tool to perform locally adapting coordinate transformations, allowing

the eigensystem to be chosen at every point, while separating the information on the

connection to the surroundings into the gauge fields.

The procedure for formulating the theory consists of several steps, which are described

in Section 2: With a few introductory considerations (Section 2.1), the strain-rate tensor

is put into a form suitable for gauge field theory. In particular a scalar expression is

formed (Section 2.2) and the tensor is symmetrized by means of polar decomposition

(Section 2.3). Based on this, the gauge fields for the strain-rate tensor are formulated

in Section 2.4 and applied to the stress tensor in Section 2.5.

The gauge fields, abstract up to this point, are compared to the Navier-Stokes

equations in Section 3, showing how they can be interpreted as flow components.

Finally, the field equation is put into standard form for further use in Section 4. A

short conclusion is found in Section 5.

1.2 Notation and basics

In the following, vectors and higher order tensors are written in bold, I and 0 denote

the respective unit and zero matrix. Covariant transforming coordinates are indicated

by subscripts, contravariant transforming coordinates by superscripts. Latin indices

run from 1 to 3, unless otherwise noted. Einstein summation convention is used

for unambiguous cases. The separation of second order tensors X ∈ GL(3,R) or

X ∈ GL(3,C) into isotropic, scalar parts X∥ and deviatory, trace-free parts X⊥ is

carried out as follows:

X = X∥ +X⊥ X∥ =
1

3
tr (X) I X⊥ = X−X∥ tr (X⊥) = 0. (1)
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All quantities used are considered dimensionless, and quantities with dimensions are

specifically marked with a superscript ()SI. The dimensionless quantities used are

derived from quantities with dimensions as follows:

ρ =
ρSI

ρSI
∞

v =
vSI

vSI
∞

r =
rSI

lSI
c

∇ = lSI

c ∇SI t =
tSI

T SI
c

, (2)

using a characteristic density ρSI
∞, characteristic velocity vSI

∞ , characteristic length lSI
c and

characteristic time period T SI
c (see e.g. Drazin & Riley, 2006; Mei, 2007). In addition,

introducing the characteristic Reynolds number ReC:

ReC =
ρSIvSI

∞lSI
c

µSI
, (3)

the dimensionless viscosities, i.e. the kinematic viscosity ν, the dynamic viscosity µ and

the volume viscosity ζ, can be expressed as follows:

ν =
νSI

lSI
c vSI

∞
= Re−1

C µ = Re−1
C ρ ζ =

ζSI

µSI
Re−1

C ρ. (4)

Throughout this manuscript, the characteristic Reynolds number ReC and all

viscosities are treated as constants within the region of interest.

The motion of viscous fluids is described by the Navier-Stokes equations. These

are a special form of the Cauchy momentum equations, which are given in their

dimensionless form by (e.g. Acheson, 1990):

ρ SrC
∂v

∂t
+ ρ(v ·∇)v = ∇ · σ −∇p+ ρg, (5)

introducing the characteristic Strouhal number SrC which serves as a dimensionless

frequency:

SrC =
lSI
c

T SI
c vSI

∞
. (6)

The specific material properties are contained in the constitutive equation, which in

the case of the Navier-Stokes equations is defined by the linear isotropic relationship

between the strain-rate tensor ε̇ and the Cauchy stress tensor σ:

σ = 2µ ε̇⊥ + 3 ζ ε̇∥ = Re−1
C ρ

(
2 ε̇⊥ +

3 ζSI

µSI
ε̇∥

)
. (7)

The linearized strain-rate tensor ε̇ is defined as the symmetrical component of the

velocity gradient F, given by the dyadic product F = (∇⊗ v) = ∇vT, whereby its

components are usually written as:

ε̇ i
j =

1

2

(
∂ivj + ∂jvi

)
. (8)

By inserting the constitutive equation Eq. 7 into the Cauchy momentum equations Eq.

5 using definition Eq. 8 yields the Navier-Stokes equations in their convective form as

follows:

ρ SrC
∂v

∂t
+ ρ(v ·∇)v = µ(∇ ·∇)v +

1

3
µ∇(∇ · v)−∇p+ ρg, (9)
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with the scalar components of the stress tensor contained in the mechanical pressure:

p = p− ζ∇ · v. (10)

In the following, only the stationary Navier-Stokes equations with ∂v
∂t

= ∂ρ
∂t

= 0 will be

considered. The system of equations also includes the continuity equation, which in the

stationary case is reduced to:

∇ · (ρv) = ∇ · j = 0. (11)

This defines the mass flow density j = ρv.

The continuity equation allows the stationary, dimensionless Navier-Stokes

equations to be written in their conservation form:

∇ · (ρv ⊗ v) = µ(∇ ·∇)v +
1

3
µ∇(∇ · v)−∇p+ ρg. (12)

Previous attempts to use local gauge theory on viscous fluids can be found e.g. in Wyld

Jr. (1961), Sulaiman & Handoko (2005), Moulden (2012).

2 Formulation as a local gauge theory

2.1 Diagonalization of the strain-rate tensor by local rotations

The strain-rate tensor is symmetric by definition. Therefore, in situations where the

tensor is uniform (ε̇ ̸= ε̇(r)), a representation of the velocity field (v ̸= v(r)) can be

found in which the strain-rate tensor is diagonalized with ε̇diag = RTε̇R, where

R ∈ SO(3) is a rotation. In this representation one can write:

ε̇diag =

∂1v1 0 0

0 ∂2v2 0

0 0 ∂3v3

 and tr
[
ε̇diag

]
= ∇ · v. (13)

However, if the strain-rate tensor depends on the location (ε̇ = ε̇(r)), no general, global

rotation can be found that diagonalizes the strain-rate tensor in all space. In order to

be able to diagonalize the tensor in every point, the global rotation R is replaced by a

local rotation R(r). This corresponds to the introduction of a local SO(3) gauge field

with ε̇diag(r) = RT(r) ε̇(r)R(r). The rotation field thus generated no longer commutes

with the derivative in the strain-rate tensor, because ∂(vR) ̸= (∂v)R.

The SO(3) gauge field can be described as a Yang-Mills theory, making use of its

extensively studied theoretical framework. However, the following constraints must first

be satisfied:

• The expression must be reduced to a scalar quantity, since Yang-Mills theories are

applied to scalar quantities (usually Lagrange densities).
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• By symmetrization according to Eq. 8 two derivatives are formed in ε̇,

each generating different, non-abelian and self-interacting gauge fields, whose

interactions are unclear. The expression should be reduced to a single derivative.

These two points are discussed in more detail in the next two paragraphs before

formulating the theory.

2.2 Scalar expression using the trace

A simple way to obtain a scalar expression from the tensor ε̇diag(r) is to form its trace.

The trace can be understood as a projection of the tensor onto a global orthonormal

basis {ei}:

tr
[
ε̇diag(r)

]
= ei ε̇diag(r) e

i = eiR
T(r) ε̇(r)R(r) ei = OT

i (r) ε̇(r)O
i(r). (14)

In the last step the projection on the base components together with the rotation

were combined to Oi(r) = R(r)ei. The Oi thus transform like vectors O′i = R′Oi with

respect to global changes of basis. They can be interpreted as projection fields from the

eigenbasis of the strain-rate tensor to the global basis {ei}.

2.3 Symmetrization using a phase

To construct ε̇ in Eq. 14 from the velocity gradient F = (∇⊗ v) = ∇vT and thus

ultimately from a velocity field v(r), the velocity gradient F must be symmetrized in a

way compatible with gauge fields.

To achieve this, at first the entries fjk of the velocity gradient F are allowed to be

complex with fjk ∈ C. As a condition, F should continue to be well-behaved, i.e. it is

considered invertible and normal (unitary diagonalizable), thus F ∈ GL(3,C) and:

FF† = F†F. (15)

With the extension to complex values, the velocity field can be constructed such

that the real part of the velocity gradient contains the symmetric components sjk and

the imaginary part contains the skew-symmetric components ajk of the initial velocity

gradient, in summary:

fjk = sjk + ajk with fjk ∈ C and

{
sjk = s∗kj, Im(sjk) = 0

ajk = −a∗kj, Re(ajk) = 0.
(16)

With this, F = HP can be partitioned using polar decomposition, where H is

in general a Hermitian matrix (hjk = h∗
kj) and P is a unitary transformation. As the

construction in Eq. 16 ensures that only the real parts of F are Hermitian, H is not only

Hermitian but symmetric H → S with real entries sjk ∈ R, and the polar decomposition

reads:
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F = SP. (17)

Because F is invertible, S is positive definite, and all its eigenvalues λS,j > 0.

Moreover, since F is normal, P commutes with S†S (inserted in Eq. 15):

P† (S†S
)
P = S

(
PP†) S† = SS† = S†S = P†P

(
S†S

)
, (18)

which means that P and S†S are simultaneously diagonalizable. In addition,

as a symmetric matrix, S can be diagonalized by applying a real rotational matrix

R ∈ SO(3):

Sdiag = RTSR. (19)

Any rotation R that diagonalizes S also diagonalizes S†S. Thus, S and P are

simultaneously diagonalizable, and there exists a real rotation R which diagonalizes S,

P and F simultaneously.

Proof 1 In the case where S has three distinct eigenvalues λS,j, S
†S also has distinct

eigenvalues. Thus S†S and P have the same eigenvectors and a rotation R which

diagonalizes S also diagonalizes P.

If S has two (or three) degenerate eigenvalues λS,j, one eigenvector of S†S and

P still coincides. The eigenvectors of P in the subspace with degenerate eigenvalues

λS,j = λS,k remain to be determined. However, in this subspace, the symmetric part

S2x2 = λS,jI2x2 and its square behave as multiples of the unit matrix and commute with

all similarity transformations. F2x2 is thus diagonalized when its skew-symmetric part

ajk is diagonalized. Based on the construction Eq. 16, however, the skew-symmetric

part is purely complex and therefore given by i times a symmetric matrix S′
2x2. This

matrix can again be diagonalized by a rotation R′
2x2, giving F and S diagonal shapes.

Then – due to Eq. 17 – P must also be diagonal, and the matrices F, S and P are

simultaneously diagonalized by a real rotation. □

The matrix S contains the requested symmetric components of F and corresponds

to the strain-rate tensor S = ε̇. In addition, there exists an expression for the velocity

gradient F = SP, which gets diagonal shape simultaneously with the strain-rate tensor:

Fdiag = RTFR = ε̇diagPdiag =

λS,1e
−iθ1 0 0

0 λS,2e
−iθ2 0

0 0 λS,3e
−iθ3

 . (20)

Where F is constructed according to Eq. 16, and with partial matrices:

ε̇diag = Sdiag =

λS,1 0 0

0 λS,2 0

0 0 λS,3

 Pdiag =

e−iθ1 0 0

0 e−iθ2 0

0 0 e−iθ3

 . (21)
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Resolved to ε̇diag, expression Eq. 20 can be put into a form which can be inserted

into Eq. 14:

ε̇diag = FdiagP
†
diag = (RTFR)P†

diag = (RT (∇vT)R)P†
diag. (22)

Remark 1 The advantage of this approach becomes clear when formulating the

interaction terms of the local gauge fields in the following section. When using the

standard symmetrization approach with ε̇ j
k = 1

2

(
∂jvk + ∂kvj

)
, the second summand

leads to three additional non-abelian SO(3) gauge fields with self-interaction, whereas

the polar decomposition approach Pdiag(r) = diag
(
e−iθ1(r), e−iθ2(r), e−iθ3(r)

)
creates at

most three abelian U(1) gauge fields without self-interaction, which can be treated

independently.

Remark 2 The construction of F according to Eq. 16 will be elaborated in more detail

in Part II of this manuscript. A design is proposed which allows to directly enter the

magnitude of shear and vorticity of the intended initial velocity field by making use of

the exterior algebra.

2.4 Gauge invariant strain-rate tensor

In summary, these considerations lead to the following expression for the trace of the

strain-rate tensor (Eq. 22):

tr
[
ε̇diag

]
= tr

[
(RT (∇vT)R)P†

diag

]
= tr

[
(RT∇)

(
vTRP†

diag

) ]
.

(23)

As expected, this expression has a form on which Yang-Mills theory can be applied in

order to diagonalize the strain-rate tensor ε̇ everywhere.

For this purpose, the rotation R = R(r) and the phase P†
diag = P†

diag(r) are

promoted to position dependent, local rotation and phase fields. In doing so, it must be

guaranteed that the expression obtained from local symmetrization and diagonalization

describes the same physics as it did before. It must therefore remain invariant under

the corresponding localized SO(3) and U(1) transformations. Their influence and

interaction on the fields are considered in the following.

2.4.1 Gauge fields using local rotations At first, pure rotations R(r) with the phase

angles set to zero (θi = 0) are considered, such that P†
diag = I:

tr
[
ε̇diag(r)

]
= tr

[
RT(r)∇ (vT(r)R(r))

]
. (24)

As a prerequisite, it is noted that for global rotations, the trace is left invariant under

similarity transformations tr
[
RTε̇R

]
= tr

[
ε̇
]
, and the such applied rotations form
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a global symmetry of the expression. This global symmetry is promoted to a local

symmetry. The rotations are represented as exponential functions:

R(r) = eiϕm(r)Lm

(25)

where the generators are given by the Lie Algebra so(3):

L1 = − i

2

0 0 0

0 0 -1

0 1 0

 L2 = − i

2

 0 0 1

0 0 0

-1 0 0

 L3 = − i

2

0 -1 0

1 0 0

0 0 0

 . (26)

The generators are defined such that they fulfill the standard requirements regarding

commutator and normalization for Yang Mills theories (e.g. Iliopoulos, 2012):[
LnLl

]
= ifmnlLm fmnl = −1

2
ϵmnl tr (LmLn) =

1

2
δmn, (27)

where ϵmnl is the Levi-Civita symbol and fmnl the structure constant defined from it.

It is now necessary to determine the local dependence of the rotations. By using

(a ⊗ b) = abT and switching to component notation, the trace becomes (the position

dependency is no longer written explicitly to allow for a compact notation):

(ε̇diag)
j
j = RT j

k∂
k
(
vT

l Rl
j

)
= RT j

k∂
k (vT

l ) Rl
j +RT j

kv
T

l ∂k
(
Rl

j

)
= RT j

k∂
k (vT

l ) Rl
j +RT j

kv
T

l

(
i∂kϕm(r)L

m
)k

Rl
j

= RT j
k∂

k (vT

l ) Rl
j +RT j

k

(
i∂kϕm(r)L

m
)k

vT

l Rl
j

= RT j
k∂

k (vT

l ) Rl
j + iRT j

k A
k
⊥ vT

l Rl
j

= (ε̇local)
j
j +

(
ε̇connect. SO(3)

)j
j

(28)

where:

Ak
⊥ = (A⊥m)

k Lm with (A⊥m)
k = ∂kϕm(r). (29)

In vectorial notation this reads:

tr
[
ε̇diag(r)

]
= tr

[
RT∇ (vT)R

]
+ tr

[
iRT Am

⊥vT R
]

= tr
[
∇vT

]
+ tr

[
iv ·Am

⊥
]

= tr
[
ε̇local(r)

]
+ tr

[
ε̇connect. SO(3)(r)

]
.

(30)

Where Am
⊥ denotes the vector with entries according to Eq. 29. It was used that the

trace remains invariant under similarity transformations and that tr[abT] = a · b. By

reordering the equation, one sees that the local component can be split into a diagonal

component (tr
[
ε̇diag(r)

]
) and a Yang-Mills like component which is generated by the

connection:

tr
[
ε̇local(r)

]
= tr

[
ε̇diag(r)

]
− tr

[
ε̇connect.SO(3)(r)

]
. (31)
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Finally, the rotations commute with the homogeneous, scalar component X∥ of tensors

in general and couple only to the deviatoric, trace-free parts X⊥:

Xdiag = RT
(
X⊥ +X∥

)
R

= RT X⊥ R+X∥.
(32)

And hence in the considered case, it holds:

tr
[
ε̇⊥local(r)

]
= tr

[
ε̇⊥diag(r)

]
− tr

[
ε̇⊥connect.SO(3)(r)

]
, (33)

with the connecting strain-rate tensor ε̇⊥connect.SO(3) = ε̇connect.SO(3) as in Eq. 30.

2.4.2 Gauge fields using a local phase The procedure for the local phase field P†
diag(r)

is essentially the same. What needs to be examined additionally is the interaction

between the real rotations R(r) and the phase field. Therefore, two cases are

distinguished:

First, let all rotation angles be equal to zero (ϕm = 0) and thus R(r) = I. Then

by definition the velocity gradient already is diagonalized F j
k = δjk∂

jvT
k . The velocity

components can be expressed as a magnitude and phase: vT
k = |vk| eiθk = vR,k e

iθk , and

the components of the complex rotation can be reduced directly in the initial strain-rate

tensor from Eq. 23:

∇
(
vTP†

diag

)
= ∇

(
vRPdiagP

†
diag

)
= ∇vR. (34)

This is also the expected result, since the eigenvalues of the strain-rate tensor are directly

visible in its diagonal shape, and they must be real in a symmetrical tensor.

The problem has thus already been solved, without necessity to specifically consider

the position dependency of the phase.

Second, as soon as real rotations R are introduced into the equation, the procedure

above will no longer work. The complex rotations P†
diag need to be taken into account

as local gauge fields. They form a group P of diagonal unitary matrices:

P†
diag ∈ P with P = {P ∈ U(3) | P j

k = δjkλj}. (35)

To furthermore get the most efficient approach, it must be ensured that only those

complex rotations are applied which act orthogonally to the real rotations R ∈ SO(3).

To orthogonalize the two groups, we first remember that the combined operation

of phase and rotation can be represented as (Eq. 22):

U = RP†
diag, (36)

where the combined transformation U ∈ U(3) is still a unitary transformation,

since both SO(3) and P are subgroups of the unitary group U(3). Considering that
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all these groups are Lie groups, Eq. 36 can be expressed as an exponential map of the

corresponding Lie algebras:

ei(φkλ
k+φ9I) = eiϕmLm

eiθnp
n

, (37)

with the Lm denoting the generators of the Lie algebra so(3) as stated in Eq. 26,

the Gell-Mann matrices λk, k ∈ {1, ..., 8} as generators of the Lie algebra su(3), and pn

the generators of the Lie algebra to the group P according to Eq. 35, which are to be

determined.

However, it is a property of the exponential map that group elements take the form

eXeY (as on the right side of Eq. 37) only if the associated elements of the Lie algebra

commute:

eX+Y = eXeY only if
[
X,Y

]
= 0. (38)

Since the form RP†
diag (Eq. 36) of the operators for diagonalization and

symmetrization of Fdiag according to Eq. 20 suffices and a perturbation theory for

rotations is to be developed, only operators commuting with all generators Lm can be

considered as the generators pn. Otherwise the form RP†
diag would be given up because

of Eq. 38.

It is easily found that none of the diagonal Gell-Mann matrices commutes with all

the rotational generators Lm. Thus, the only generator of the Lie algebra of P acting

orthogonally to SO(3) is the unit matrix, and the following form for P†
diag is obtained:

P†
diag = eiθI = Ieiθ. (39)

This result fits seamlessly into the previous findings, since as stated in Eq. 32, real

rotations leave scalars invariant and therefore also the scalar component of the tensors

considered. Furthermore, the scalar component forms an invariant one-dimensional

subspace, onto which the group Pdiag of complex rotations orthogonal to the real

rotations must act as a phase. Hence, the separated equation is:

tr
[
ε̇diag

]
= tr

[
RT ε̇⊥R+ ε̇∥e

iθ
]

= tr
[
RT ε̇⊥R

]
+ tr

[
ε̇∥e

iθ
]

= tr
[
ε̇⊥diag

]
+ tr

[
ε̇∥diag

]
.

(40)

In summary: If real rotations R(r) are introduced, the actions of R(r) and P(r)

must be orthogonalized to avoid the introduction of redundant symmetry operations.

The group of rotations P(r) orthogonal to R(r) then acts only as a phase on the one-

dimensional subspace of scalar components of the strain-rate tensor.

Remark 3 (group structure) U(1) is the normal subgroup of U(3), defined as the

subgroup that commutes with each element of the group. Therefore, U(1)⋊SO(3) forms

a semidirect product, the two subgroups have a trivial intersection U(1) ∩ SO(3) = I,

and U(1) is again the normal subgroup of this composite group.
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With the orthogonalization, the scalar component can be treated separately. To

introduce the local dependency of the phase, one needs an expression that remains

invariant under global phase transformations. This can be found by squaring the scalar

part. One can then write for local phases θ(r):

ε̇∗∥diag · ε̇∥diag =
1

9
I
(
∇ ·

(
v∗e−iθ

)) (
∇ ·

(
veiθ

))
=

1

9
I
(
(∇ · v∗)e−iθ − iv∗ · (∇θ)e−iθ

) (
(∇ · v)eiθ + iv · (∇θ)eiθ

)
=

1

9
I (∇ · v∗ − iv∗ · (∇θ)) (∇ · v + iv · (∇θ))

=
1

9
I (∇ · v + iv · (∇θ))2

=
1

9
I
(
∇ · v + iv ·A∥

)2
,

(41)

for which the definition A∥ = ∇θ(r) was used in the last step.

This results in two complex conjugated roots for the scalar part of the strain-

rate tensor, whereby in the following only one root is evaluated first (the second root

and implications caused by squaring are dealt with in Part II of this manuscript). In

continuation:

tr
[
ε̇∥diag

]
= tr

[
∇ · v + iv ·A∥

]
= tr

[
∇vT

]
+ tr

[
iv ·A∥

]
= tr

[
ε̇∥local(r)

]
+ tr

[
ε̇∥connect.U(1)(r)

]
,

(42)

which again can be reordered to:

tr
[
ε̇∥local(r)

]
= tr

[
ε̇∥diag(r)

]
− tr

[
ε̇∥connect.U(1)(r)

]
. (43)

The full local strain-rate tensor can be composed of the scalar and deviatoric

components:

tr
[
ε̇local

]
= tr

[
ε̇⊥local

]
+ tr

[
ε̇∥local

]
, (44)

and inserted from Eqs. 33 and 43, as well as using Eq. 40, this finally results in the

trace of the strain-rate tensor being:

tr
[
ε̇local(r)

]
= tr

[
ε̇⊥diag(r)

]
+ tr

[
ε̇∥diag(r)

]
− tr

[
ε̇⊥connect. SO(3)(r)

]
− tr

[
ε̇∥connect.U(1)(r)

]
= tr

[
ε̇diag(r)

]
− tr

[
iv ·Am

⊥
]
− tr

[
iv ·A∥

]
.

(45)

Where ε̇diag is as in Eq. 13.

2.4.3 Full strain-rate tensor In order to obtain the full dynamics of the gauge fields,

their kinetic terms are introduced. For this purpose the gauge fields A∥ and Am
⊥ are
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written as vector potentials (Sanchez-Monroy & Quimbay, 2010):

B∥(r) = ∇×A∥

Bm
⊥(r) = ∇×Am

⊥ − 1

2
fmnl

(
An

⊥ ×Al
⊥
)
.

(46)

With the help of these fields, respective field strength tensors are defined:

Fjk = −ϵijk(B∥)
i

Gm
jk = −ϵijk(B

m
⊥ )i.

(47)

B∥(r) and Bm
⊥(r) are axial vector fields and Bm

⊥(r) has bivectors as components. Fjk(r)

and Gm
jk(r) are the respective bivector fields associated with the axial vector fields.

The inherent dynamics of the gauge fields can be expressed in their covariant form

as a function of the field strength tensors and is incorporated into the trace of the

strain-rate tensor as follows:

tr
[
ε̇local

]
= tr

[
ε̇diag − ε̇connect.U(1) − ε̇connect.SO(3) + ε̇U(1) + ε̇SO(3)

]
= tr

[
ε̇diag − iv ·A∥ − iv ·Am

⊥
]
+

1

4
FjkF

jk +
1

4
Gm

jkG
m jk.

(48)

The kinetic terms of the gauge fields can be rewritten such that they would be

included in the trace (using the relation of the Levi-Civita symbol to the Kronecker-

Delta ϵijkϵ
njk = 2δni ):

1

4
FjkF

jk =
1

4
ϵijkϵ

njkBi
∥B∥n =

1

4
2δni B

i
∥B∥n =

1

2
tr
[
Bi

∥B∥n
]
, (49)

as well as

1

4
Gm

jkG
mjk =

1

4
ϵijkϵ

njkBmi
⊥ Bm

⊥n =
1

4
2δni B

mi
⊥ Bm

⊥n =
1

2
tr
[
Bmi

⊥ Bm
⊥n

]
. (50)

In vectorial notation this becomes:

tr
[
ε̇U(1)

]
=

1

4
FjkF

jk =
1

2
tr
[
B∥ ⊗B∥

]
, (51)

and

tr
[
ε̇SO(3)

]
=

1

4
Gm

jkG
m jk =

1

2
tr
[
Bm

⊥ ⊗Bm
⊥
]
. (52)

In this form, the trace can be removed on both sides of Eq. 48, to obtain the strain-rate

tensor (determined up to a similarity transformation):

ε̇local = ε̇diag − ivAT

∥ − iv(Am
⊥)T +

1

2

(
B∥ ⊗B∥

)
+

1

2

(
Bm

⊥ ⊗Bm
⊥
)
. (53)

Where ε̇diag is as in Eq. 13, and it was used that the scalar product can be expressed

as the trace of a dyadic product a · b = tr[abT].
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2.5 Gauge invariant stress-tensor

The relation between stress-tensor and strain-rate tensor is expressed by the constitutive

equation Eq. 7. Thus, the local stress tensor can be obtained by inserting the local

strain-rate tensor Eq. 53:

σlocal =2µ ε̇⊥local + 3ζ ε̇∥local

=σ⊥diag + σ∥diag − σconnect.SO(3) − σconnect.U(1) + σSO(3) + σU(1)

=2µ ε̇diag +

(
ζ − 2µ

3

)
(∇ · v)I

− 2µ iv(Am
⊥)T − 3ζ ivAT

∥

+ µ
(
Bm

⊥ ⊗Bm
⊥
)
+

3ζ

2

(
B∥ ⊗B∥

)
,

(54)

with ε̇diag as in Eq. 13.

3 Identification of gauge fields and relation to the Navier-Stokes equations

The location-dependent diagonalization and symmetrization of the local velocity

gradient give rise to the gauge fields Bm
⊥ and B∥ on the connection between different

points. These fields are abstract until now. The goal of this section is to show that these

gauge fields can be identified with components of the velocity field of the Navier-Stokes

equations, and thus do not add complexity, but rather involve a rearrangement of the

existing fields.

For the comparison, the derived tensor 54 is brought into the same form as in

the Navier-Stokes equations by by calculating its divergence. The divergence is first

determined for the individual components, then combined and compared with the

Navier-Stokes equations.

3.1 Divergence of the diffusion component

The diffusion component σdiag is already diagonalized, such that the divergence can be

expressed as:

∇ · σdiag = 2µ∇ · ε̇diag +
(
ζ − 2µ

3

)
∇(∇ · v). (55)

To simplify this expression somewhat further, it can be used that ε̇diag is rotation-

free (∇×v = 0), since its off-diagonal components are zero everywhere ε̇diag
j
k = ∂jvT

k =

0 for j ̸= k, and its eigenvalues are real ε̇diag
j
k = δjk∂

jvT
k ∈ R:

∇ · σdiag = 2µ∇ · ε̇diag +
(
ζ − 2µ

3

)
∇(∇ · v)

= 2µ∇2v +

(
ζ − 2µ

3

)(
∇2v +∇× (∇× v)

)
=

(
ζ +

4µ

3

)
∇2v.

(56)
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3.2 Divergence of the interaction terms

The divergence of the interaction terms disappears if the directional derivatives of the

gauge fields along the unperturbed velocity vector (v ·∇)Am
⊥ ≈ 0 and (v ·∇)A∥ ≈ 0

vanish. These become negligible if the perturbation along the axis of flow changes slowly,

i.e. ϕm(r) ≈ ϕm(r+ vdt) and θ(r) ≈ θ(r+ vdt). This is the case for a sufficiently large

unperturbed flow |v| = dr
dt

≫ 1 (and therefore dr ≫ dt) with location-independent

shear or vorticity, to which small location-dependent perturbations are applied. By

additionally using the continuity equation Eq. 11, one has:

∇ · σconnection = ∇ ·
(
2µ iv(Am

⊥)T
)
+∇ ·

(
3ζ iA∥v

T
)

= ∇ ·
(
2Re−1

C ρ iv(Am
⊥)T

)
+∇ ·

(
3
ζSI

µSI
Re−1

C ρ iA∥v
T

)
= 2i Re−1

C

(
(∇ · ρv)Am

⊥ + ρ (v ·∇)Am
⊥

)
+ 3i

ζSI

µSI
Re−1

C

(
(∇ · ρv)A∥ + ρ (v ·∇)A∥

)
= 0.

(57)

3.3 Divergence of the kinetic terms of the gauge fields

The divergence of the kinetic terms of the gauge fields is remaining, which is considered

in the following. The components are rescaled:

σSO(3) = µBm
⊥ ⊗Bm

⊥ = ρ
(
Re−1

C Bm
⊥ ⊗Bm

⊥
)
=: ρ

(
vm
⊥ ⊗ vm

⊥
)

(58)

and

σU(1) =
3ζ

2
B∥ ⊗B∥ = ρ

(
3ζSI

2µSI
Re−1

C B∥ ⊗B∥

)
=: ρ

(
v∥ ⊗ v∥

)
. (59)

In the respective last steps, the following scaled gauge fields were defined:

vm
⊥ =

√
Re−1

C Bm
⊥ and v∥ =

√
3ζSI

2µSI
Re−1

C B∥. (60)

Next, the divergence is calculated, taking advantage of the fact that by construction

the vm
⊥ are orthogonal to v∥ (e.g. Huybrechts, 2004):

∇ ·
(
σSO(3) + σU(1)

)
= ∇ ·

[
ρ
(
vm
⊥ ⊗ vm

⊥ + v∥ ⊗ v∥
) ]

= ∇ ·
[
ρ
(
vm
⊥ + v∥

)
⊗
(
vm
⊥ + v∥

) ]
.

(61)

This expression has the same form as the convection term of the Navier-Stokes equations

in their conservation form, Eq. 12 :

∇ · (ρv ⊗ v) . (62)
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Furthermore, the gauge field components vm
⊥ and v∥ from Eq. 60 transform like

axial vectors, and thus, up to space inversion, the same as the velocity field v in Eq. 62.

The issue of space inversion is addressed in the next paragraph, and solved by

changing the sign of the coupling constant when inverting space.

As a result, the scaled gauge fields vm
⊥ and v∥ coincide both in form and

transformation properties with the convection term of the Navier-Stokes equations and

can therefore be identified with each other. According to Eq. 61 and Eq. 62 the

identification reads:

v = vm
⊥ + v∥, (63)

with the gauge fields vm
⊥ and v∥ forming the convection velocity field.

3.4 Divergence of the overall stress tensor

The divergence of the stress tensor becomes in summary (inserted from Eqs. 56, 57 and

61):

∇ · σlocal = ∇ · σdiag −∇ · σconnection +∇ ·
(
σSO(3) + σU(1)

)
= 2µ∇ · ε̇diag +

(
ζ − 2µ

3

)
∇(∇ · v) +∇ · (ρv ⊗ v)

=

(
ζ +

4µ

3

)
∇2v +∇ · (ρv ⊗ v) .

(64)

3.5 Insertion into the Cauchy momentum equations and comparison with

Navier-Stokes equations

The divergence Eq. 64 is inserted into the stationary Cauchy momentum equations

(from Eq. 5):

ρ(v ·∇)v = ∇ · σlocal −∇p+ ρg. (65)

Bringing the material derivative on the left side to its convective form yields:

∇ · (ρv ⊗ v) =

(
ζ +

4µ

3

)
∇2v +∇ · (ρv ⊗ v)−∇p+ ρg

0 =

(
ζ +

4µ

3

)
∇2v −∇p+ ρg.

(66)

As required at the start, with Eq. 66 the Navier-Stokes equations are obtained

in the Eigensystem of the stress tensor at each point. These equations based on the

diagonalized stress tensor contain only diffusive flow components, while the nonlinear,

convective information from the material derivative is separated and absorbed by the

divergence of the gauge fields.

At the same time, with the transfer of the convective flow components into the

gauge fields, these components are suitably structured to apply perturbation theory.
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The stress tensor σlocal from Eq. 54 thus contains – up to a global similarity

transformation – the information on all inner forces of the Navier-Stokes equations

including the convective parts in the case of a base flow with location-dependent

perturbations according to Par. 3.2.

4 Normalized scalar form

In this section, the field equation defined in Section 3 is expressed in a standardized

form suitable for further treatment as a field theory. From the scaled vector fields Eq.

60, scaled field tensors and vector potentials are defined:

F ′
jk = −ϵijk(v∥)

i =

√
3ζSI

µSI ReC

Fjk

G′m
jk = −ϵijk(v

m
⊥ )

i =

√
2

ReC

Gm
jk

(67)

A′
∥ =

√
3ζSI

µSI ReC

A∥ =
√
3ζρ−1 A∥

A′m
⊥ =

√
2

ReC

Am
⊥ =

√
2µρ−1 Am

⊥ .

(68)

Whereas for the convective velocity fields Eq. 60 it holds that:

v∥ =
1√
2
∇×A′

∥

vm
⊥ =

1√
2

(
∇×A′m

⊥ − 1

2
fmnlA

′n
⊥ ×A′l

⊥

)
.

(69)

Going back to the stress tensor Eq. 54 and looking at its trace, this reads in terms

of the scaled fields, using that ε̇diag
j
k = δjk∂

jvT
k ∈ R (as in Eq. 56) and applying Eq. 4

for the constants:

tr
[
σlocal

]
=

(
ζ +

4µ

3

)
tr
[
∇vT

]
− 2µ i tr

[
v ·Am

⊥
]
− 3ζ i tr

[
v ·A∥

]
+

µ

2
Gm

jkG
m jk +

3ζ

4
FjkF

jk

=

(
ζ +

4µ

3

)
∇ · v −

√
2

ReC

ρ iA′m
⊥ · v −

√
3ζSI

µSI ReC

ρ iA′
∥ · v

+
1

4
ρG′m

jkG
′m jk

+
1

4
ρF′

jkF
′jk.

(70)

This expression can be brought into the standard form of Yang-Mills theories with

normalized kinetic terms according to 1
4
G′m

jkG
′m jk and 1

4
F′

jkF
′jk by dividing through

the density:

ρ−1 tr
[
σlocal

]
=

(
ζSI

µSI
+

4

3

)
Re−1

C D · v +
1

4
G′m

jkG
′m jk

+
1

4
F′

jkF
′jk. (71)
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Finally defining the gauge covariant derivative D and the coupling constants g and g′

between the locally diagonalized diffusion term and the convection fields:

D =∇− igA′m
⊥ − ig′A′

∥, (72)

and therefore (using that ∇ · v = tr
[
ε̇diag

]
from Eq. 13):

D · v =tr
[
ε̇diag

]
− igA′m

⊥ · v − ig′A′
∥ · v, (73)

with

g =

√
2(

ζSI

µSI +
4
3

)√ReC and g′ =

√
3ζSI

µSI(
ζSI

µSI +
4
3

)√ReC . (74)

Please note that as stated in Section 3, the sign of the coupling constants is inverted

upon space inversion in order to achieve the correct transformation properties of the

underlying gauge fields:
⌣g = −g and

⌣g′ = −g′.

5 Conclusion

A method is presented to locally diagonalize the strain-rate tensor found in fluid

mechanics in the entire space, using SO(3) × U(1) gauge fields. From this, a locally

diagonal stress tensor is determined which is coupled through these gauge fields to the

surrounding stresses. It is derived that the diagonal component contains the diffusion

terms of the flow, whereas the gauge fields contain the convective parts.

In addition, the stress tensor includes interaction terms which describe the

interaction between diffusion and convection terms. Taken the material-related pre-

factors in the gauge coupling constants as a given, the interaction terms couple

proportionally to the square root of the Reynolds number
√
ReC to the diffusion terms

(Eq. 74), thus exhibiting the expected property that flows behave according to the

Reynolds similarity law.

The introduced gauge fields describe the symmetry properties of convective flows

to a previously unknown degree: The convection is composed of four skew-symmetric

flow fields, of which three are volume preserving and one is not. The volume preserving

fields are non-abelian and show self-interactions of higher order.

It is shown that the stress tensor constructed according to Eq. 71 contains all

information of the Navier-Stokes equations up to a global similarity transformation in

the situation of a stationary flow with location-independent shear or vorticity to which

location-dependent perturbations are applied. This equation can thus be used as an

alternative basic equation for many stationary problems in fluid mechanics, and offers

advantages over the Navier-Stokes equations in terms of interpretation and/or solution

approaches, depending on the application.



18

Since the structure of Eq. 71 is very similar to minimal coupling field theories in

quantum mechanics, it can be expected, that – with favorable boundary conditions –

the gauge fields can be quantized using the second quantization formalism.

This makes it possible to interpret the gauge fields as quasi-particles with properties

depending on the Reynolds number. Due to the properties of the underlying symmetry

groups, the quasi-particles have bosonic spin 1 character, and thus contain an inherent

angular momentum. They can therefore be interpreted as elementary vortices. The

SO(3) fields can be understood as elementary vortices with orientation in the three

Cartesian spatial directions, which interact with each other. It is interesting to note

that in two-dimensional flows the self-interaction disappears, because in this case the

system of equations is reduced to a SO(2)×U(1) theory with the abelian rotating group

SO(2).

The U(1) convection field interacts due to volume viscosity and disappears in non-

compressible fluids.

Since the gauge fields in field equation Eq. 71 leave the trace tr [ε̇] of the strain-rate

tensor (or the trace tr [ε̇∗ε̇] in the compressible case) invariant, the developed equation is

particularly suitable to investigate flows with globally constant trace – including the case

of incompressible flows with constant trace tr [ε̇] = 0. The gauge fields then provide the

information about possible perturbations and degrees of freedom within the framework

set by the trace.

However, more detailed examinations on these topics must be left for further work.
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