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Abstract. The gauge field equation for fluid mechanics established in Part I is

developed into a first-order scattering theory in the simplified case of a two-dimensional

incompressible flow over a flat plate. This is used to present a model for the origin of

Tollmien-Schlichting (TS) waves based on scattering between fluid particles.

As a result, analytical formulae for the maximum amplification factor and the

transition point from laminar to turbulent flow in the boundary layer are obtained.

The mathematical transformations from the stationary field equations in Part I to

a scattering theory with time evolution along the flow axis using Wick rotation are

elaborated in detail.
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1 Introduction

1.1 Current state, goal and further procedure

In the first part, a gauge field equation was presented by Eq. 71 from which the

Navier-Stokes equations (NS equations) can be derived. It was shown that this

equation contains the information of the stationary NS equations up to a similarity

transformation. In addition, it was demonstrated that an interpretation of the gauge

fields as convective components of the velocity field of a fluid is possible.

The goal of the second part is to advance this gauge field equation into an operational

scattering theory and to demonstrate how it can be applied in practice through an

example.
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Figure 1: Schematic illustration of a boundary layer flow (light blue) over a flat plate (gray).

A flow with velocity v∞ hits a plate from the left. The flow decelerates above the plate to

the laminar velocity profile v1 (blue arrows) with the momentum thickness δ2 (red) plotted.

Downstream, the transition to a turbulent boundary layer occurs, starting with characteristic

wave-like flow patterns, the Tollmien-Schlichting (TS) waves.

For this purpose, building on the field equation from Part I, a quantized view is

introduced, describing the fluid consisting of quasiparticles possessing purely laminar

or purely vortical properties. From this description, a scattering theory of the fluid

quasiparticles among themselves is developed.

This approach is used to study the formation of Tollmien-Schlichting (TS) waves:

Wavelike structures arising in the two-dimensional airflow over a flat plate or wing

profile, marking the first visible step of the transition from laminar to turbulent flow

in the boundary layer (Fig. 1). This transition point has a high relevance in the

optimization of airfoils and is therefore well studied experimentally (Tollmien 1929,

Schlichting 1933 as well as e.g. Schlichting & Gersten 2017 and references therein).

The current models for the theoretical description of TS waves are based on tracking

the evolution of perturbations along streamlines over the plate (solution of the Orr-

Sommerfeld equation by linear stability theory, eN -method and similar numerical

methods, see e.g. van Ingen 2008, Schmid & Henningson 2012 and references therein).

Within an instability zone, the amplitude of the perturbations is amplified. This

amplification can be quantified by numerical integration. Reaching a cumulative

amplification by a factor of eN (usually N = 9) of the original perturbation is considered

as the transition point to TS waves. Two corresponding examples from Simon (2017)

are shown in Fig. 2.
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Figure 2: Two examples of frequency-amplification diagrams using the eN method from Simon

(2017). On the left for the situation in a wind tunnel, on the right for a test flight. Within the

instability zones, perturbation frequencies are amplified (black line, maximum amplification

dashed in black). Integration of the amplification along the x-axis gives the accumulated gain,

which is shown logarithmically as amplification factor n from en (colored contours yellow-

red-black). The maximum accumulated gain eN (white-dashed line) in the case of the flight

example exceeds the transition point to TS waves N = 9 in the range of x/l ≈ 0.55. These

data are calculated numerically.

However, the success of these models is limited (van Ingen, 2008): Numerical

integration is costly and leads to inaccurate results. In addition, the models are limited

to TS waves and are not suitable for characterizing the further transition to turbulence,

since the originating problem in describing turbulence is not solved: The key issue in

modeling turbulent flows is that the traveled path of a single fluid volume starts behaving

chaotically. The concept of the streamline as the path of a single fluid volume thus loses

its relevance.

The advantage of the presented approach through a quantized point of view lies in

the application of the path integral formalism as it is used in quantum mechanics.

This formalism takes into account all possible paths of motion and their probability

simultaneously, and as a result brings out those statistical aspects which are still valid

when it becomes impossible to trace the path of a single fluid volume.

Applied to fluid mechanics, the formalism thus abandons the tracking of individual

particles, but in return allows a direct statistical analysis of the overall flow behavior.

Further advantages of this approach are:

• An analytical result is obtained whereas with the conventional approach only

numerical solutions are possible.

• The model as a scattering theory provides an explanatory approach for the

emergence of turbulence based on elementary physical principles.

• The new approach is extendable to the later stages of the transition to turbulence.

By expanding the theory to the three-dimensional case and taking higher order

perturbation terms into account, nonlinear effects can be modeled due to self-

interaction of the vortex gauge fields.
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The proposed model can be split into three steps:

(i) The undisturbed laminar flow consists of elementary laminar quasiparticles without

angular momentum. The magnitude and direction of the undisturbed flow defines,

by means of x1 = vt, a basic time axis along which the time evolution of the

following processes takes place. This axis is used to introduce a covariant time

scale using Wick rotation.

(ii) The perturbation by the plate causes the creation of elementary vortices of

different rotational frequencies at this location. The elementary vortices are bosonic

quasiparticles with rotational components whose properties depend on the Reynolds

number.

(iii) The elementary vortices and the laminar quasiparticles subsequently collide and

scatter from each other as they move downstream along the plate. Similar to the

Compton effect in quantum mechanics, the rotational frequency of the elementary

vortices decreases with each scattering process. In this process, high frequencies

are reduced more than low ones, leading to the accumulation of elementary vortices

with similar frequencies downstream and ultimately to the formation of a resonance,

which becomes observable macroscopically.

The further procedure is as follows: In Section 2 the field equation Eq. 71 from Part I is

transformed such that it is expressed as similar as possible to existing scattering theories,

and the fields get standard transformation properties. For this purpose, a constant base

flow is considered, to which small rotational perturbations are applied.

For the simplified two-dimensional incompressible case, the reflection positivity of

the theory is shown in Section 3, which is a precondition for Wick rotation and treatment

as a unitary scattering theory. The quantization is done in a natural way by identifying

the particles of the theory with the molecules of the fluid. The influence of the velocity

gradient in the boundary layer is assessed as an effective mass.

With this, a first order scattering theory is developed in Section 4 and a model of the

origin of TS waves based on the statistical distribution of scattering events is presented in

Section 5. As an approximation, only those events with the largest momentum transfer

are considered. A summary and a conclusion are provided in Section 6.

1.2 Notation

In the following, vectors and higher order tensors are written in bold, I and 0 denote the

respective unit and zero matrix. Covariant transforming coordinates are indicated by

subscripts, contravariant transforming coordinates by superscripts. Latin indices in the

middle or at the end of the alphabet run from 1 to 3. For the two-dimensional Euclidean

case, Latin indices in the early alphabet are used, running from 1 to 2. In Minkowski

space, Greek indices are used with values ranging from 0 to 1. Einstein summation

convention is used for unambiguous cases.
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2 General mathematical transformations

In this section, two goals are to be achieved. First, the equation derived in Part I

is transformed into a common form for gauge field theories in order to permit the

subsequent application of the established concepts for quantization. In particular, the

focus lies on obtaining fields with favorable transformation properties. Second, the

equation is arranged in a way that the velocity field satisfies the construction conditions

for the velocity gradient from Part I (Eq. 16) in a convenient way.

The starting point is the derivation of the diagonalized strain-rate tensor. It has

been diagonalized by rotational and phase fields (Eq. 23 in Part I):

tr [ε̇diag] = tr [RT ε̇R] = tr
[(

RT∇
)(

vTRP†
diag

)]
. (1)

The rotational fields R and the phase field P†
diag are considered directly as local

fields according to the derivation in Part I. In the form Eq. 1, it becomes clear that

the overall expression ε̇diag has diagonal shape, but the inner tensor ε̇ can be entered

in any form. This degree of freedom is used to choose ε̇ such that this tensor acquires

favorable properties for inputting the initial velocity field.

The proposed transformations are performed in paragraphs 2.1 to 2.2 for this

expression and inserted at the end of each paragraph into the local gauge field Eq.

71 from Part I.

2.1 Definition of projection fields

2.1.1 Location dependency/ local basis There are two perspectives to expression Eq.

1.

Perspective with respect to a global basis: According to the derivation, the local

coordinate system is rotated to produce a diagonalized expression at each point. Thereby

the velocity field v(r) and the gradient field ∇(r) are transformed by coordinate

transformations into adjusted fields v′(r) and ∇′(r):

tr [ε̇diag(r)] = tr
[(

RT(r)∇(r)
)(

vT(r)R(r)P†
diag(r)

)]
= tr [∇′(r)v′T(r)] .

(2)

As indicated, the location dependency remains on the local fields v(r) and ∇(r).

Perspective with respect to a local basis: The gradient and velocity fields are expressed

with respect to an orthonormal local basis {fk}. This basis can be chosen such that

the first basis vector f1 always points in the direction of the local velocity field v(r). In

component notation, this looks as follows (using summation convention):

∇ = fk∂k and vT = fnv
′n = f1v

′1(r). (3)
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In the next step, the trace is formulated as the projection of the local expression

onto the global Euclidean standard basis {ej} by means of trX =
∑

j ejXej. This opens

a second perspective, containing the location dependency on the gauge fields. Inserting

Eq. 3 into Eq. 1 yields:

tr [ε̇diag(r)] =
(
ejR

T(r)
)
∇vT(r)

(
R(r)P†

diag(r) e
j
)

=
(
ejR

T(r)
)
fk∂kf1v

′1(r)
(
R(r)P†

diag(r) e
j
)

= O′T
j (r)f1f

k∂k

(
v′1(r)Oj(r)

)
.

(4)

In this perspective, the rotation and phase fields form a left and a right projection

field Oj and O′T
j from the local basis {fk} – with respect to which ∇ and vT are

expressed – to the global basis {ej}. The projection fields defined in the last step of Eq.

4 are different on the right and left side:

Oj(r) = f1R(r)P†
diag(r) e

j and O′T
j (r) = ej R

T(r)f1. (5)

With this interpretation, the direction dependency passes from the local quantities

∂k and v′n to the projection fields Eq. 5, which contain the coordinate transformation

from the local basis to the global basis. v′1(r) includes only the information on the

location-dependent velocity magnitude, not on the direction. The local basis vector f1
is included in the projection function for later convenience.

Remark 1 Using this perspective, the local basis {fk}, with respect to which the fields ∇
and v are expressed, can be chosen freely. This is possible because a change of the local

basis will be incorporated by the projection fields such that the total expression remains

diagonal. This has been utilized directly in the definition of the basis system {fk} in Eq.

3.

Eq. 4 inserted into Eq. 71 from Part I using Eq. 73 from Part I results in the

overall stress tensor:

ρ−1 tr [σlocal(r)] =

(
ζSI

µSI
+

4

3

)
Re−1

C O′T
j (r)f1f

kDk

(
v′1(r)Oj(r)

)
+

1

4
G′m

jkG
′m jk +

1

4
F′

jkF
′jk.

(6)

with (according to Eq. 72 from Part I):

D = ∇− igA′m
⊥ − ig′A′

∥. (7)
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2.1.2 Splitting the phase field For the spatial derivative of scalar functions x(r), it is

generally true that:

∇x2 = 2x∇x, (8)

which can be used to split the phase P†
diag(r) = Ieiθ(r) symmetrically on both projection

fields. This motivates the definition of an adjusted projection field Qj(r) with respect

to Eq. 5:

Qj(r) = f1R(r)eiθ(r)/2ej and QT

j (r) = ej e
iθ(r)/2RT(r)f1, (9)

with the help of which the strain-rate tensor Eq. 4 can be expressed as a function of

the field Qj(r) and its transpose QT

j (r):

tr [ε̇diag(r)] = QT

j (r)f1f
k∂k

(
v′1(r)Qj(r)

)
. (10)

When inserting into stress tensor Eq. 6, the coupling must be adapted to the

redefined phase field:

ρ−1 tr [σlocal(r)] =

(
ζSI

µSI
+

4

3

)
Re−1

C QT

j (r)f1f
kD′

k

(
v′1(r)Qj(r)

)
+

1

4
G′m

jkG
′m jk +

1

4
F′

jkF
′jk,

(11)

with

D′ = ∇− igA′m
⊥ − 2ig′A′

∥. (12)

Where the covariant derivative D′ has been adjusted compared to Eq. 7 so that the

doubled coupling constant compensates for the halved field strength of the right phase

field on which the derivative is acting.

2.2 Adjoint projection fields

Except for the phase field eiθ(r)/2, the two projection fields Qj and QT

j (Eq. 9) form

the conjugate transpose (adjoint) to each other. However, the phase field destroys the

adjointness. This leaves Eq. 11 invariant under orthogonal transformations but not

under unitary transformations, which complicates the analytic continuation.

In this section, a consistent treatment for the phase field is proposed, using a

description with adjoint projection fields. The procedure is based initially on an

extension of the underlying equation by introducing an additional symmetry plane.

When restricting to the two-dimensional case in Section 3, the extended system can be

separated again, thus introducing the adjoint fields without increasing complexity.
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2.2.1 Separating shear and vorticity parts by projection into the Clifford algebra For

further argumentation, an explicit local basis {fk} is introduced. According to the

construction, the symmetric shear part of the flow has to be inserted into the velocity

gradient as real and the skew-symmetric vorticity part as imaginary values (Eq. 16 in

Part I). Thus, it is beneficial to choose a basis in which real and imaginary coordinates

are separated automatically into symmetric and skew-symmetric parts of the flow.

The subalgebra Λ2(R3) of the outer algebra Λ(R3) forms a basis of the skew-

symmetric matrices. This motivates to project the local basis vectors {fk} into the

outer algebra where they first span the subalgebra of vectorially transforming elements

R3 → Λ1(R3) (Renaud, 2022). The dyadic product fkfj in Eq. 10 subsequently forms a

basis of the desired subalgebra of skew-symmetric matrices Λ2(R3) plus the unit matrix I.

On the other hand, the outer algebra on Euclidean space is equal to the

Clifford algebra, determining the specific form of the basis: In three dimensions the

corresponding Clifford algebra is given by Λ(R3) = Cl(3, 0)R (which is extended by

analytic continuation to Cl(3)C), with the defining anticommutative property:

{f j, fk} = f jfk + fkf j = 2δjkI. (13)

Thus, a possible projection of the local basis vectors R3 → Cl1(3, 0)R is specified

by the Pauli matrices:

f1 = σ1 =

(
0 1

1 0

)
f2 = σ2 =

(
0 −i
i 0

)
f3 = σ3 =

(
1 0

0 −1

)
. (14)

With this, the dyadic products {fkfj} for j ̸= k, using the fk according to Eq. 14,

form a generating set of a space isomorphic to the skew-symmetric matrices over the

R3.

Simultaneously, these generators multiplied by i, namely {ifkfj} for j ̸= k as well

as f1f1 = I generate a space isomorphic to a part of the symmetric matrices over the R3.

More precisely, they span a four-dimensional subspace of the six-dimensional space of

symmetric matrices over R3. Since we are ultimately interested in the three-dimensional

space of diagonal symmetric matrices, the dimensionality of {ifkfj} is sufficient to

introduce any meaningful initial conditions in a practical way. The remaining symmetric

matrices can be obtained by similarity transformations.

Therefore, in this basis the symmetrical and skew-symmetrical parts of the velocity

gradient are directly partitioned into real and imaginary parts of the coordinates.

However, they are still partially interchanged. Therefore the velocity field is redefined

to:

v′1(r) = iv1(r), (15)

yielding when inserted into the strain-rate tensor Eq. 10:

tr [ε̇diag(r)] = QT

j (r)f1f
k∂k

(
iv1(r)Qj(r)

)
. (16)
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In this representation, the initial velocity field v1 can be introduced straightfor-

wardly as a scalar field whose gradient corresponds to the local shear and vorticity

strengths ωshear and ωvorticity. In components this reads:

∂kv
1(r) = ωshear

k + iωvorticity
k . (17)

Please note that in flow direction x1 the roles of shear and vorticity are reversed

initially. However, this reversal is later eliminated by the Wick rotation x1 → ix1, which

is required independently for the formulation of the scattering theory.

Thus, the choice of basis Eq. 14 ensures that the real parts enter the equation in

hermitian and the complex parts in skew-hermitian form (isomorphic to symmetric and

skew-symmetric parts over the R3) and is used in the following.

Remark 2 The space spanned by the Pauli matrices x = fkxk, xk ∈ R together with the

scalar product ⟨xy⟩ = 1
2
tr(xy) continues to form a representation of Euclidean space.

The Pauli matrices {f j} = {σj} are in this case to be understood as a projection of the

canonical basis of Euclidean space into the Clifford algebra. More precisely, they span

the subspace Cl1(3, 0) = R3 of the vectorial transforming elements of Cl(3, 0), resp.

their analytic extension (Renaud, 2022).

The algebra of rotations can be expressed in terms of this basis as:

Lm = − i

4

[
fn, f l

]
= − i

4

(
fnf l − f lfn

)
=

1

2
ϵmnlσm, (18)

with the transformations:

R = e
i
2
ϕmσm ≈ I+

i

2
ϕmσ

m. (19)

and the transformation rule for vectors w (e.g. Straub, 2016):

w′ = RwR†. (20)

Because the rotation fields in this description are not purely real anymore, in this

basis Eq. 16 must be adjusted:

tr [ε̇diag(r)] = ej e
iθ(r)/2R†(r)f1f

1fk∂k
(
iv1(r)Q

j(r)
)
, (21)

since the left side can no longer be expressed as QT

j . In addition, it is used that in

the chosen basis (Eq. 14) it holds that f1 = f1 = (f1)
∗ = (f1)

T.

Remark 3 The transition to the description of the rotation fields as SU(2)-fields

is a purely computational step exploiting the isomorphism between the Lie algebras

su(2) ∼= so(3) which allows to formulate the scattering theory according to standard

literature. The physical rotations continue to transform as SO(3) fields and would need

to be back-transformed if needed. With respect to the Clifford algebra, they span the

subspace Cl2(3, 0) of the bivectorially transforming elements of Cl(3, 0).
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2.2.2 Auxiliary tensor with complex conjugated phase As noted in Par. 2.4.2 in Part

I, the phase eiθ is not a global symmetry of the strain-rate tensor ε̇, but only of the

tensor ε̇∗ε̇. For the perturbative calculation it is sufficient to consider small phases

(eiθ ≈ 1 + iθ), which makes it possible to generate a phase-invariant expression by

adding to the existing trace a complex conjugate strain-rate tensor ε̇∗ with inverted

phase:

tr
[
˙
˜
ε
]
=

1

2
tr
[
ε̇
]
+

1

2
tr
[
ε̇∗
]
. (22)

Since the original strain-rate tensor is real-valued in its unperturbed form, this

expression remains invariant in first order under phase transformations:

tr
[
˙
˜
ε
]
=

1

2
tr
[
ε̇eiθ

]
+

1

2
tr
[
ε̇∗e−iθ

]
≈ 1

2
tr
[
ε̇(1 + iθ)

]
+

1

2
tr
[
ε̇∗(1− iθ)

]
=

1

2
tr
[
ε̇
]
+

1

2
tr
[
ε̇∗
]
+O(θ2).

(23)

The extended phase-invariant strain-rate tensor ˙
˜
ε is denoted with a tilde below

the symbol. The complex conjugation can be performed at first on the original, non-

diagonalized strain-rate tensor:

ε̇∗(r) =
(
eiθ(r)/2f1fk∂k

(
iv1(r)e

iθ(r)/2
))∗

= e−iθ(r)/2f1(fk)∗∂k
(
−iv∗1(r)e−iθ(r)/2

)
.

(24)

The complex conjugate tensor in Eq. 24 can be transformed some further using

similarity transformations, allowing the definition of adjoint projection fields. The

trace tr [ε̇∗] of the tensor does not change in consequence. First, the same similarity

transformation is applied to the complex conjugate tensor ε̇∗ as to the original tensor

(Eq. 21), yielding the tensor ˙
˘
ε′:

tr
[
˙
˘
ε′(r)

]
= tr

[
R†(r)ε̇∗(r)R(r)

]
= ej e

−iθ(r)/2R†(r)f1f
1(fk)∗∂k

(
−iv∗1(r)f1R(r)e−iθ(r)/2ej

)
.

(25)

In addition, for further use, the tensor is rotated by π in the real plane. The

mirrored and rotated tensor ˙
˘
ε is marked with a breve below the symbol:

tr
[
˙
˘
ε(r)

]
= tr

[
− iσ†

2 ˙
˘
ε′(r) iσ2

]
= ej σ

†
2e

−iθ(r)/2R†(r)f1f
1(fk)∗∂k

(
−iv∗1(r)f1R(r)e−iθ(r)/2σ2ej

)
= ej e

−iθ(r)/2RT(r)f1f
1fk∂k

(
−iv∗1(r)f1R∗(r)e−iθ(r)/2σ†

2σ
2ej
)

= ej e
−iθ(r)/2RT(r)f1f

1fk∂k
(
−iv∗1(r)f1R∗(r)e−iθ(r)/2ej

)
= ej e

−iθ(r)/2RT(r)f1f
1fk∂k

(
−iv∗1(r)Q∗j(r)

)
.

(26)
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In this calculation, the following permutation property of σ2 with all Pauli matrices

σm was applied:

−σ2σ∗m = +σmσ2, (27)

and consequently for the rotations:

σ2R∗ ≈ σ2(I− i

2
ϕmσ

∗m) = (I+
i

2
ϕmσ

m)σ2 ≈ Rσ2. (28)

Tensor Eq. 26 is used to form the extended, semi-diagonalized strain-rate tensor

˙
˜
εhdiag, whose trace is given by:

tr
[
˙
˜
εhdiag(r)

]
=

1

2
tr
[
ε̇diag(r)

]
+

1

2
tr
[
˙
˘
ε(r)

]
, (29)

with partial tensors according to Eqs. 21 and 26 and invariant in first order under

phase transformations as shown in Eq. 23. This configuration can be used to define

adjoint projection fields.

Remark 4 Please note that the complex conjugate auxiliary tensor ˙
˘
ε does in general

not have diagonal shape in the three-dimensional case. However, in the two-dimensional

case (from Section 3 onwards), both tensors ε̇ and ˙
˘
ε are diagonalized simultaneously.

Diagonal shape is not a necessary condition for the introduction of adjoint projection

fields in this section.

2.2.3 Doubled strain-rate tensor and adjoint phase To construct Eqs. 21 and 26 by

means of adjoint projection fields with respect to Qj, the eigenvalues of the squared

strain-rate tensor are considered first. For a unitary matrix C it holds that:

ε̇†diagε̇diag = ε̇†diagC
†Cε̇diag = (ε̇C

diag)
† ε̇C

diag. (30)

And analogously for the mirrored strain-rate tensor ˙
˘
ε. C is chosen to be:

C = σ2, (31)

with which the trace of the slightly adjusted tensor ε̇C

diag, defined in the last step

of Eq. 30, can be written as (starting from Eq. 21, the projection fields as defined by

Eq. 9, and subsequent application of permutation relations Eqs. 27 and 28):

tr
[
ε̇C

diag(r)
]
= tr

[
Cε̇diag(r)

]
= ej Ce

iθ(r)/2R†(r)f1f
1fk∂k

(
iv1(r)Q

j(r)
)

= ej e
iθ(r)/2RT(r)f1f

1Cfk∂k
(
iv1(r)Q

j(r)
)

= QT

j (r)f
1Cfk∂k

(
iv1(r)Q

j(r)
)
,

(32)

as well as for the mirrored tensor
˘
ε̇C (starting from Eq. 26):
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tr
[
˘
ε̇C(r)

]
= tr

[
C∗

˘
ε̇(r)

]
= ej C

∗e−iθ(r)/2RT(r)f1f
1fk∂k

(
−iv∗1(r)Q∗j(r)

)
= ej e

−iθ(r)/2R†(r)f1f
1C∗ fk∂k

(
−iv∗1(r)Q∗j(r)

)
= Q†

j (r)f
1C∗ fk∂k

(
−iv∗1(r)Q∗j(r)

)
.

(33)

The combined trace of these two tensors tr
[
˜
ε̇C

hdiag

]
= 1

2
tr
[
ε̇C

diag

]
+ 1

2
tr
[
˘
ε̇C
]
can be

written with adjoint projection fields. For this purpose, a “doubled” projection field
˜
Qj

is considered by inserting the complex conjugate field Q∗j below the original projection

field from Eq. 9:

˜
Qj(r) =

(
Qj(r)

Q∗j(r)

)
=

(
f1R(r)eiθ(r)/2ej

f1R∗(r)e−iθ(r)/2ej

)
. (34)

Together with a permutation matrix:

˜
C =

(
0 C∗

C 0

)
=

(
0 −σ2

σ2 0

)
, (35)

and the shorthand notation:

˜
f1
˜
fk
˜
∂ki

˜
v1(r) =

(
f1fk∂kiv1(r) 0

0 −f1fk∂kiv
∗
1(r)

)
, (36)

the combined trace can be expressed as follows:

tr
[
˙
˜
εC

hdiag(r)
]
=

1

2

(
˜
Q†

j (r)
˜
f1

˜
C
˜
fk
˜
∂k

)(
i
˜
v1(r)

˜
Qj(r)

)
=

1

2

(
QT

j (r)f
1Cfk∂k

)(
iv1(r)Q

j(r)
)

+
1

2

(
Q†

j (r)f
1C∗ fk∂k

)(
− iv∗1(r)Q

∗j(r)
)

=
1

2
tr
[
ε̇C

diag(r)
]
+

1

2
tr
[
˙
˘
εC(r)

]
.

(37)

With this, a form is found in which the projection fields
˜
Q†

j and
˜
Qj (Eq. 34) form

adjoint fields to each other. As a last step, the following shorthand notation for the left

projection field is introduced:

˜
Qj(r) =

˜
Q†

j (r) i
˜
f1

˜
C. (38)

This yields, substituted into Eq. 37, for the doubled strain-rate tensor:

tr
[
˙
˜
εC

hdiag(r)
]
=

1

2 ˜
Qj(r)

˜
fk
˜
∂k
(
˜
v1(r)

˜
Qj(r)

)
. (39)
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Remark 5 ε̇C

diag does no longer correspond exactly to the original strain-rate tensor due

to the additional matrix C according to Eq. 16. However, by constructing it through Eq.

30, it is guaranteed that the eigenvalues squared are the same. The eigenvalues of ε̇C

diag

thus coincide with the eigenvalues of the original strain-rate tensor ε̇diag except for a

global phase. The connection between the solutions for ε̇diag and ε̇C

diag is discussed in

Section 6.2.

2.2.4 Insertion into the stress tensor and field connection To express the doubled

stress tensor associated with the doubled strain-rate tensor Eq. 39, the behavior of

the coupling upon reflection must be taken into account. For the doubled covariant

derivative together with the complex conjugation this results in:

˜
D′ =

(
D′ 0

0
˘
D′

)
, (40)

with (from Eq. 12):

D′ = ∇− igA′m
⊥ − 2ig′A′

∥

˘
D′ = ∇+ ig

(
A′m

⊥
)∗

+ 2ig′A′
∥.

(41)

The adjoint fields and the doubled strain-rate tensor are transferred into Eq. 11

and one obtains for the doubled stress tensor:

ρ−1 tr
[
˜
σC

local(r)
]
=

1

2

(
ζSI

µSI
+

4

3

)
Re−1

C

˜
Qj(r)

˜
fk

˜
D′

k

(
˜
v1(r)

˜
Qj(r)

)
+

1

8
G′m

jkG
′m jk +

1

8 ˘
G′m

jk
˘
G′m jk +

1

4
F′

jkF
′jk,

(42)

with the complex conjugated rotational fields:

˘
G′m

jk =
(
G′m

jk

)∗
. (43)

3 Problem specific simplifications and adjustments

In this section, the field equation is maximally simplified to formulate the most

elementary scattering theory. For this purpose, the boundary layer flow over the flat

plate (Fig. 1) is represented as a two-dimensional, incompressible flow in x1-direction

and, in addition, the gradient of the velocity field normal to the flow direction is linearly

approximated.

In this framework, the remaining properties for the formulation of a scattering

theory – such as normalization and reflection positivity – are established, before Wick

rotation and quantization take place.

Nomenclature is adapted according to the two-dimensionality: Latin indices a, b

run from 1 to 2 and after Wick rotation Greek indices α, β run from 0 to 1.
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3.1 Incompressible two-dimensional flow

In the example, an incompressible flow is considered. Thus, the density remains constant

ρ = ρSI

ρSI
∞

= 1 and the volume viscosity can be neglected ζSI ≈ 0, whereby also the coupling

to the phase field g ≈ 0 vanishes (Eq. 74 in Part I).

Due to the two-dimensionality, for the Clifford algebra Cl1(2, 0) a chiral basis can

be chosen, e.g.:

f1 = σ1 =

(
0 1

1 0

)
f2 = σ2 =

(
0 −i
i 0

)
. (44)

With respect to the chiral basis Eq. 44, the rotations take diagonal form, the only

generator is:

L3 = − i

4

[
f1, f2

]
=

1

2
σ3 and

˘
L3 = −1

2
σ3 = −L3, (45)

where σ3 ∈ Cl2(2, 0). The corresponding rotations are given by:

R(r) = e
i
2
ϕ3(r)σ3

and
˘
R(r) = e−

i
2
ϕ3(r)σ3

= R∗(r). (46)

Thus, the two-dimensional abelian rotation potential A′ 2D
⊥ is formed by the third

component (perpendicular to the considered plane) of the original three-dimensional

potential Eq. 68 in Part I:

A′ 2D
⊥ = ∇ϕ(r)L3, (47)

The covariant derivative and the coupling to the rotational gauge field are simplified

compared to Eq. 12 to:

D = D′ = ∇− ig2DA
′ 2D
⊥ g2D =

3

2
√
2

√
ReC . (48)

For the doubled covariant derivative, it holds that (compare to Eq. 41):

˜
D =

(
D 0

0
˘
D

)
=

(
∇− ig2DA

′ 2D
⊥ 0

0 ∇+ ig2DA
′ 2D
⊥

)
=

(
D 0

0 D∗

)
. (49)

The chiral element σ5 takes diagonal form in the selected basis:

σ5 = iσ1σ2 =

(
−1 0

0 1

)
. (50)

The upper and lower components of the two-dimensional projection fields Qa do

not mix under rotations and can be split into their chiral parts. In addition, the phase

can be set to zero θ(r) = 0, since the phase field does not couple in the incompressible
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case. This results in the simplified projection fields compared to the general case (Eq.

9):

Qa(r) =

(
Qa

L(r)

Qa
R(r)

)
= f1R(r)ea = f1eiϕ3(r)L3

ea, (51)

and consequently for the doubled projection fields (Eq. 34):

˜
Qa(r) =

(
Qa(r)

Q∗a(r)

)
and

˜
Qa(r) =

˜
Q†

a(r) i˜
f1

˜
C. (52)

The Qa
L/R denote the respective left- and right-handed chiral parts of the fields. As

usual, these can be separated using the projection operators PL/R = 1
2
(1∓ σ5).

˜
C remains unchanged:

˜
C =

(
0 C∗

C 0

)
=

(
0 −σ2

σ2 0

)
. (53)

The principal equation Eq. 42, simplifies for the two-dimensional incompressible

flow and is given by:

tr
[
˜
σC

local(r)
]
=

2

3
Re−1

C

˜
Qa(r)

˜
fb

˜
Db

(
˜
v1(r)

˜
Qa(r)

)
+

1

4
G′ 2D

ab (r)G′ ab
2D (r), (54)

with

˜
fb

˜
Db

˜
v1(r) =

(
fbDbv1(r) 0

0 −fbD∗
bv

∗
1(r)

)
. (55)

The first term on the right side of Eq. 54 has diagonal shape as discussed in Remark

4.

3.2 Block diagonal form

The field equation Eq. 54 can be rearranged in a way that on one hand
˜
C gets a block

diagonal form, and at the same time the subfields transforming equally under rotations

are combined. This is possible because the rotations take diagonal shape (Eq. 46) and

do not mix the individual components.

First, the diagonal term
˜
σC

diag(r) without coupling to the gauge fields is considered.

Writing out the upper and lower blocks, its trace according to Eq. 54 is as follows

(if1σ2 = σ5 in two dimensions according to Eq. 50):

tr
[
˜
σC

diag(r)
]
=

2

3
Re−1

C

(
Q†

a(r) QT

a (r)
)( 0 if1σ2

if1σ2 0

)(
fb∂b (v1(r)Q

a(r))

fb∂b (v
∗
1(r)Q

∗a(r))

)
=

2

3
Re−1

C

[
QT

a (r)σ
5fb∂b (v1(r)Q

a(r)) +Q†
a(r)σ

5fb∂b (v
∗
1(r)Q

∗a(r))
]
.

(56)
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Component-wise examination of Eq. 56 shows that the individual equations can be

rearranged to produce two independent blocks:

tr
[
˜
σC

diag(r)
]
=

2

3
Re−1

C

[(
QL,a(r) QR,a(r)

)
σ5fb∂b

(
v1(r)

(
Qa

L(r)

Qa
R(r)

))

+
(
Q∗

L,a(r) Q∗
R,a(r)

)
σ5fb∂b

(
v∗1(r)

(
Q∗a

L (r)

Q∗a
R (r)

))]

=
2

3
Re−1

C

[(
Q∗

L,a(r) QR,a(r)
)
σ5fb∂b

(
˜
v1(r)

(
Qa

L(r)

Q∗a
R (r)

))

+
(
QL,a(r) Q∗

R,a(r)
)
σ5fb∂b

(
˜
v∗1(r)

(
Q∗a

L (r)

Qa
R(r)

))]

=
2

3
Re−1

C

[
Q′†

a (r)σ
5fb∂b (

˜
v1(r)Q

′a(r))

+Q′T
a (r)σ5fb∂b (

˜
v∗1(r)Q

′∗a(r))

]
.

(57)

Where in the last step of Eq. 57, the projection fields Q′a were defined by swapping

the respective lower entries of Qa and Q∗a (Eq. 51):

Q′a(r) =

(
Qa

L(r)

Q∗a
R (r)

)
Q′†

a (r) =
(
Q∗

L,a(r) QR,a(r)
)
, (58)

and

˜
v1(r) =

(
v1(r) 0

0 v∗1(r)

)
. (59)

In this way, each of the two-component fields Q′a and Q′∗a (Eq. 58) separately

forms an equation with individually adjoint projection fields already:

tr
[
˜
σC

diag(r)
]
=

1

2
tr
[
σ′C

diag(r)
]
+

1

2
tr
[
˘
σ′C

diag(r)
]
, (60)

with sub-components:

tr
[
σ′C

diag(r)
]
=

4

3
Re−1

C Q′
a(r)f

b∂b (
˜
v1(r)Q

′a(r)) . (61)

tr
[
˘
σ′C

diag(r)
]
=

4

3
Re−1

C Q′∗
a (r)f

b∂b (
˜
v∗1(r)Q

′∗a(r)) , (62)

and defining:

Q′
a(r) = Q′†

a (r)σ
5. (63)
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3.2.1 Insertion Again, the gauge fields are added to Eqs. 61 and 62. To do so, the

lower entries of the respective rotational fields are swapped. This interchange of the

lower entries of the generators of rotations Eq. 45 results in separating the left-handed

and right-handed rotational components:

L′3 =
1

2
I and

˘
L′3 = −1

2
I. (64)

These generators lead to rotational fields of the form e
i
2
ϕ3(r)I as well as e−

i
2
ϕ3(r)I for

the mirrored term, and have the transformation behavior of half-integer phase fields

with respective reversed phase. This has the advantage that the rotations can be

formulated as actual U(1) fields with scalar generator. For this purpose, the fields are

to be defined with integer generator, which in principle corresponds to a trace formation

of the generators from Eq. 64. One obtains for the rotations:

R′(r) = tr
[
e

i
2
ϕ3(r)I

]
= eiϕ3(r) and

˘
R′(r) = tr

[
e−

i
2
ϕ3(r)I

]
= e−iϕ3(r), (65)

and for the vector potential (from Eq. 47):

A′U1
⊥ = ∇ϕ(r)

1

2
tr(I) = ∇ϕ(r). (66)

The doubled generators halve the coupling constant compared to Eq. 48 and it

holds for the covariant derivative:

D = ∇− igU1A
′U1
⊥ gU1 =

g2D
2

=
3

4
√
2

√
ReC . (67)

The components of the projection fields from Eq. 58 can now be specified as well:

Q′a(r) =

(
Qa

L(r)

Q∗a
R (r)

)
= f1R′(r)ea = f1eiϕ(r)ea. (68)

Inserted and summarized, this gives for the block diagonal local stress tensor (from

Eq. 54):

tr
[
σ′C

local(r)
]
=

4

3
Re−1

C Q′
a(r)f

bDb (
˜
v1(r)Q

′a(r)) +
1

4
G′U1

ab (r)G′ ab
U1 (r). (69)

tr
[
˘
σ′C

local(r)
]
=

4

3
Re−1

C Q′∗
a (r)f

bD∗
b (
˜
v∗1(r)Q

′∗a(r)) +
1

4
G′U1

ab (r)G′ ab
U1 (r). (70)

The lower equation does not contain any additional information, therefore only the

upper block (Eq. 69) is considered in the further argumentation.
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3.3 Normalization

The scattering theory only treats those cases in which an actual scattering event takes

place. This means that the projection fields Q′a(r) are limited to those positions where

particles are located, while otherwise they are zero. Hence, using definition Eq. 68, at

a position r it is valid that:

Q′†
a (r)Q

′a(r) =

{
2 particle at position r.

0 otherwise.
(71)

It is useful to redesign the normalization in such a way that, on one hand, the

particle density and thus the geometric effective cross section is taken into account, and

on the other hand the projection fields are defined as continuous functions over the

whole space. To achieve this, some average quantities for air molecules are introduced.

These are given by:

• The average diameter of an air particle 2rSI
p .

• The distance to the next particle, given by the mean free path dSI
box.

Both are quantities for which experimental data is available in numerous cases (see

Section 5.5). Based on this, the dimensionless box length dc is defined:

dc =
dSI
box

2rSI
p

. (72)

As a model, the flow is conceived as a periodic distribution of air particles of

diameter 2rSI
p . To achieve periodicity, each particle occupies a square box of length

√
π
2
dSI
box, which contains the same area as a circle of diameter dSI

box (Fig. 3a). For the

theory, only the ratios between the quantities are crucial, so for the sake of simplicity,

the particles are also assumed to be quadratic (Fig. 3b).

For the volume integral of the projection fields over a box, taking into account Eq.

71, it holds that:∫
Vbox

Q′†
a (r)Q

′a(r)dr =

∫
Vp

Q′†
a (r)Q

′a(r)dx1dx2 = 2(rSI

p )2π. (73)

Based on this, a fluid-wave function with new normalization is defined:

ψ′a(r) = dc

√
2

π
Q′a(r). (74)

Where dc serves as a stretching factor and
√

2
π

as a form factor. The average of

this wave function squared is given by (using Eq. 73):

(dSI

box)
−2

∫
Vbox

ψ′†
a (r)ψ

′a(r)dV = 1, (75)
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Figure 3: a) The cylindrical or circular air molecules with radius 2rSI
p are periodically arranged

in boxes with the same area as a circle with diameter of the mean free path dSI
box. b) The air

molecules are replaced by square areas of the same extension (form factor). c) To be able to

define the projection functions on the whole space, the particles are distributed on the whole

cell by means of stretched coordinates r = dcr, while at the same time the density of the state

is reduced (stretch factor).

and corresponds to the average number of particles per box. Therefore, the

normalization defined by Eq. 75 can be interpreted as follows:

The physical particle is stretched to the total volume of the box, while at the same

time the density of the state is reduced by a factor d−2
c , such that the state probability

remains the same. The space is thus filled with particles, which, however, simulate the

geometry of smaller particles due to their lower density of state ( 3c).

With this interpretation, the scattering quantities are defined on the entire volume

(completeness), while at the same time the geometric cross section is taken into account

by the stretching.

3.3.1 Insertion To define all quantities on the entire volume, in addition to the

normalization Eq. 75, the field quantities are expressed with respect to stretched

coordinates r, where it holds that:

r = dc r ψ′a(r) = ψ′a(r) v1(r) = v1(r). (76)

When inserting into equation Eq. 69, the field differentials must also be

transformed. One obtains for a vector field w(r):

∇w(r) =
∂w(r)

∂r
=
∂w(r)

∂r

∂r

∂r
= dc∇w(r). (77)

Inserting the fluid wave function Eq. 74 into Eq. 69 and expressed with respect to

the stretched coordinates yields:

tr
[
σ′C

local(r)
]
=

2π

3
(ReCdc)

−1ψ′
a(r)f

bDb (
˜
v1(r)ψ

′a(r)) +
1

4
G′U1

ab (r)G′ ab
U1 (r). (78)

With wave functions (Eq. 68 inserted into 74):
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ψ′a(r) =

(
ψa
L(r)

ψ∗a
R (r)

)
= dc

√
2

π
Q′

a = dc

√
2

π
f1R′(r)ea = dc

√
2

π
f1eiϕ(r)ea, (79)

and (applying Eq. 63):

ψ′
a(r) = dc

√
2

π
Q′

a = ψ′†
a (r)σ

5 = dc

√
2

π
eae

−iϕ(r)f1σ
5. (80)

As well as the covariant derivative with respect to the stretched coordinates (Eq.

77 inserted into Eq. 67):

D = ∇− igU1A
′U1
⊥ (r) A′U1

⊥ (r) = ∇ϕ(r). (81)

3.4 Initial state: Laminar boundary layer

3.4.1 Basic parameters in the laminar boundary layer Up to the point of emergence

of the TS waves, the fluid can be modeled as a laminar Blasius boundary layer flow with

the relative height expressed as a self-similar variable η (Blasius, 1908):

η(r) = xSI

2

√
ρSIvSI

∞
µSIxSI

1

=
x2
x1

√
Re∞ with r = (x1, x2). (82)

Here Re∞ denotes the Reynolds number at infinite distance from the plate surface,

expressed with respect to the dimensionless stretched coordinate x1:

Re∞ =
ρSIvSI

∞x
SI
1

µSI
=
ρSIvSI

∞l
SI
c

µSIdc
x1. (83)

3.4.2 Effective shear For the model being developed, it appears that the velocity

profile is of interest in the region near the plate surface, where it behaves as a parallel

shear flow (Fig. 4a). In this region, the velocity field can be expressed as a linearly

approximated function of height η (according to Eq. 82):

v1(r) ≈ 0.332 η(r) = 0.332
x2
x1

√
Re∞ = c1

x2
x1

√
Re∞ . (84)

The approximated linear velocity profile is shown in Fig. 4a with a gray line. From

here on, we write for the coefficient c1 = 0.332 and calculate the velocity gradient applied

to the particle:

f2∂2v1(r) + f1∂1v1(r) = f2
c1
x1

√
Re∞ − f1

c1x2
2(x1)2

√
Re∞

≈ f2
c1
x1

√
Re∞ = f2ωeff..

(85)
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In the approximation it was used that in the boundary layer the distance to the

plate surface is small (x2 =
xSI
2

lc
≪ 1) and thus the derivative in x1-direction (second

term in Eq. 85) is much smaller than the derivative in x2 direction (first term in Eq.

85). The amount of shear effectively acting on the particle is given by:

ωeff. =
c1
x1

√
Re∞ . (86)

Remark 6 Since the gradient Eq. 85 is performed with respect to the stretched

coordinates x1, x2, the expression for ωeff. (Eq. 86) includes only the fraction of the

velocity difference which acts on the actual particle, i.e. the effective velocity difference.

3.4.3 Velocity field in a box The scattering theory will be defined along a line of

constant velocity vSI = vSI
∞v, corresponding to a constant relative height η0 = const. in

the velocity profile.

Since the scattering processes occur within a small box, the velocity field is of

interest only at a fixed height x02 with a small deviation (Fig. 4b):

x′2 = x2 − x02. (87)

The relative height (Eq. 82) can be expressed with respect to these shifted

coordinates according to:

η(r) = η0 + η′(r) η0 =
x02
x1

√
Re∞ η′(r) =

x′2
x1

√
Re∞ . (88)

Finally it holds for the real velocity field (Eq. 88 inserted into Eq. 84):

v1(r) = v∗1(r) = v + c1η
′(r) = v + x′2ωeff., (89)

where

v = c1η
0 = const. (90)

Therefore, for the flow in a box along the line considered (Eq. 89), one obtains a

constant base flow v = const. as well as a small shear component ωeff.. This corresponds

to the form required for the construction according to Par. 2.2.1 and can be inserted

into the stress tensor Eq. 78.

3.4.4 Insertion When inserting the velocity field Eq. 89, it is utilized that the field

is real, and thus it holds that:

˜
v1(r) =

(
v1(r) 0

0 v∗1(r)

)
= Iv1(r). (91)

Thus, the velocity field can be inserted into Eq. 78, with the velocity gradient

according to Eq. 85 executed explicitly. Again, the diagonal term σ′C
diag is considered

first:
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Figure 4: a) Nondimensionalized velocity profile in the laminar boundary layer. In blue

the numerically calculated Blasius velocity profile (values used from Jaman, Molla & Sultana,

2011). In gray, the linearly approximated velocity profile for small η. (b) Schematic illustration

of the layers and details within an elementary cell including the definition of the coordinates.

The top and bottom layers move faster/ slower by a velocity amount of ±∆v = ±
√
π
2 ωeff.rp

than the cell under consideration.

tr
[
σ′C

diag(r)
]
=
2π

3
(ReCdc)

−1ψ′
a(r)f

b∂b

(
˜
v1(r)ψ

′a(r)
)

=
2π

3
(ReCdc)

−1ψ′
a(r)

[
fb∂b

(
˜
v1(r)

)
ψ′a(r) +

˜
v1(r)f

b∂b

(
ψ′a(r)

)]
≈2π

3
(ReCdc)

−1ψ′
a(r)

[
f2ωeff.ψ

′a(r) +
(
v + x′2ωeff.

)
fb∂b

(
ψ′a(r)

)]
≈2π

3
(ReCdc)

−1ψ′
a(r)

[
f2ωeff.ψ

′a(r) + v fb∂b

(
ψ′a(r)

)]
=
2π

3
(ReCdc)

−1ψ′
a(r)

(
f2ωeff. + v fb∂b

)
ψ′a(r).

(92)

In these steps, the approximation was such that in each order only the leading term

was considered. In detail, the approximations are:

• consideration of the boundary layer near the surface, such that x2 =
xSI
2

lc
≪ 1.

• consideration of a small enough box, such that x′2ωeff. ≪ v.

3.4.5 Diagonalization of the shear term Since the shear in Eq. 92 is no longer

dependent of f1, the shear term f2ωeff. can be diagonalized by means of a location-

independent rotation R0. Specifically, the following rotation is used:

R0 = eiσ
2π/4, (93)

and inserted with the wave functions according to Eq. 79, the diagonalized shear

term is obtained:
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ψ′
a(r)f

2ωeff.ψ
′a(r) =

2d2c
π

tr
[
e−iϕ(r)f1σ

5f2ωeff.f
1eiϕ(r)

]
=
2d2c
π

tr
[
R†

0e
−iϕ(r)f1σ

5f2ωeff.f
1eiϕ(r)R0

]
=
2d2c
π

tr
[
e−iϕ(r)f1σ

5
(
R†

0f
2R†

0

)
ωeff.f

1eiϕ(r)
]

=
2d2c
π

tr
[
e−iϕ(r)f1σ

5 (iI)ωeff.f
1eiϕ(r)

]
=ψ′

a(r)iωeff.Iψ
′a(r).

(94)

Thereby, the invariance of the trace under cyclic permutations and the

anticommutation of σ5 with the Pauli matrices were used.

Remark 7 Please note that this procedure works only in the incompressible case with

phase θ = 0, since the rotation R0 would mix the phase components.

Substituting into the governing Eq. 78 results in:

tr
[
σ′C

local(r)
]
=

2π

3
(ReCdc)

−1ψ′
a(r)

(
iωeff.I+ v fbDb

)
ψ′a(r) +

1

4
G′U1

ab (r)G′ ab
U1 (r). (95)

3.5 Locality and local Reynolds number

While the action of the applied fields is estimated locally, ReC in Eq. 95 is a non-local

constant and indirectly introduces a long-range interaction with the flow conditions at

chord length lSI
c of the airfoil.

This problem can be circumvented by using the local Reynolds number ReL
(e.g. Schlichting & Gersten 2017) instead of the characteristic Reynolds number ReC
(according to Eq. 3 in Part I) to nondimensionalize the Navier-Stokes equations:

ReC =
ρSIvSI

∞l
SI
c

µSI
−→ ReL =

ρSIvSIxSI
1

µSI
. (96)

To do so, it is required that ReL can be considered constant in the range of the scattering

process, which takes place within a box of length
√
π
2
dSI
box according to Par. 3.3.

This is the case in the boundary layer for xSI
1 ≫ dSI

box, since additionally in Par.

3.4, the influence of the velocity gradient inside the box has been separated from the

velocity field. Thus, Eq. 95 is rescaled to:

tr
[
σ′C

local(r)
]
=

2π

3
(ReLdc)

−1ψ′
a(r)

(
iωeff.I+ v fbDb

)
ψ′a(r) +

1

4
G′U1

ab (r)G′ ab
U1 (r). (97)

With local coupling to the phase field (see Eqs. 67 and 81):

D = ∇− igL

U1A
′U1
⊥ (r) gL

U1 =
3

4
√
2

√
ReL . (98)
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Remark 8 (Interpretation) In detail, the coordinate along the plate is split into the

starting coordinate of the box x0,j1 (see Fig. 4b) and the residual coordinate inside the

box x′SI
1 :

xSI

1 = x0,j1 + x′SI

1 . (99)

Thereby, x0,j1 is a dimensioned quantity, the superscript ()SI is omitted for readability.

For the nondimensionalization, the Reynolds number at the starting coordinate x0,j1 of

the scattering box is used:

ReL =
ρSIvSIx0,j1

µSI
≈

x0,j
1 ≫dSI

box

ρSIvSIxSI
1

µSI
. (100)

This nondimensionalization corresponds to a substitution of the length scale to (compare

with Eq. 2 in Part I):

x1 =
xSI
1

x0,j1

=
x0,j1 + x′SI

1

x0,j1

= 1 +
1

j

x′SI
1

dSI
box

∇ = x0,j1 ∇SI. (101)

Where the starting coordinate of the j-th box was expressed in terms of box lengths as

x0,j1 = j · dSI
box.

The periodic structure allows to limit the domain to a single box (which corresponds

to superimposing previously traversed boxes):

xmod
1 = x1 mod 1 =

1

j

x′SI
1

dSI
box

. (102)

In this form, the nondimensionalization of the length scale can be interpreted as the

mean value of the nondimensionalized coordinate within the box
x′SI
1

dSI
box

, averaged over the

number j of boxes traversed up to that point.

3.6 Quantization of the theory

3.6.1 Interpretation as Euclidean quantum theory Eq. 97 has the mathematical form

of a Lagrangian for the two-dimensional Euclidean Dirac equation with normalized,

explicitly SO(2)-invariant wave functions ψ′a(r) as solutions (see the formalism in van

Nieuwenhuizen & Waldron 1996). This implies that Eq. 97 can be quantized using the

formalism of second quantization by forming operators Ψ′ from the wave functions:

Ψ′(r) =
∑
b

ψ′b(r)ab. (103)

In addition, the definition of boxes with periodic boundary conditions according to

Section 3.3 is helpful, since these can be used as a natural cut-off criterion.

However, one can go even further – with a few more considerations, it is possible to

formulate a fully quantized scattering theory starting from the current Euclidean field

theory. The steps needed for this are carried out in this section:
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First, a basic direction of time evolution is needed (Par. 3.6.2). Then the time

component is Wick-rotated to obtain a covariant, dynamic quantum theory (Par. 3.6.4).

To ensure that the resulting theory is unitary, reflection positivity of the Euclidean

theory is shown in advance (Par. 3.6.3). Furthermore, the physical interpretation as a

Lagrangian density is motivated (Par. 3.6.5).

In the transition from Euclidean to Minkowski space, Latin indices a, b ∈ 1, 2 are

used for Euclidean quantities, and Greek indices α, β ∈ 0, 1 for quantities in Minkowski

space. Additionally, if the notation might be ambiguous, in this section ()E and ()M
sub- or superscripts are inserted for Euclidean and Minkowski measures, respectively.

3.6.2 Basic time direction, mapping of the time- to the x1-axis The scattering theory

is defined along a line of constant velocity vSI = vSI
∞v, which corresponds to a constant

relative height η (Eq. 82) in the velocity profile. Along this line, the local Reynolds

number ReL is only a function of the dimensionless coordinate in the profile direction

ReL = ReL(x1) in the incompressible case.

Both quantities ReL and x1 are used to track the evolution of the flow along the

plate (e.g., Figs. 1 & 2) and implicitly correspond through:

x1 = vt (104)

to the time evolution of a fluid volume along constant relative height η. Eq. 104

defines a basic time axis with respect to which the scattering theory can be formulated.

3.6.3 Reflection positivity By defining a time axis according to Eq. 104, the wave

functions Eq. 79 can be expressed as functions of time:

ψ′a(r) = ψ′a(vt, x2) with (dSI

box)
−2

∫
Vbox

ψ′†
a (vt, x2)ψ

′a(vt, x2)dV = 1, (105)

additionally, the inner product is defined as follows:

〈
ψ′,ϕ′〉

E
= (dSI

box)
−2

∫
Vbox

ψ′
aϕ

′a dV = (dSI

box)
−2

∫
Vbox

ψ′†
a σ

5ϕ′a dV. (106)

Reflection positivity for the functions Eq. 105 with respect to the inner product

Eq. 106 is given if it holds that (see e.g. Friedli & Velenik, 2017; Neeb & Ólafsson,

2018): 〈
ψ′(vt, x2),ψ

′(−vt, x2)
〉
E
≥ 0 t ∈ [0,∞). (107)

To show that condition Eq. 107 is satisfied, the explicit forms of the wave functions

can be used. These are defined by (Eq. 79):

ψ′a(vt, x2) =

(
ψa
L(vt, x2)

ψ∗a
R (vt, x2)

)
= dc

√
2

π
f1eiϕ(vt,x2)ea. (108)
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Where ψL and ψ∗
R transform equally under rotations (however the sign of the phase

θ would be reversed). Under time inversion, the generator of rotations changes its sign

L3
−t−→ −L3, which means for the rotation angle that:

ϕ(−vt, x2) = −ϕ(vt, x2), (109)

and for the time-inverted wave functions (Eq. 109 inserted into Eq. 108):

ψ′a(−vt, x2) =

(
ψa
L(−vt, x2)

ψ∗a
R (−vt, x2)

)
= dc

√
2

π
f1e−iϕ(vt,x2)ea. (110)

With this, the condition for reflection positivity Eq. 107 can be verified by explicit

calculation:

〈
ψ′(vt, x2),ψ

′(−vt, x2)
〉
E
= (dSI

box)
−2

∫
Vbox

[
− ψ∗L

a (vt, x2)ψ
a
L(−vt, x2)

+ ψR
a (vt, x2)ψ

∗a
R (−vt, x2)

]
dV

= (
√
2π rSI

p )−2

∫
Vbox

[
−e−2iϕ(vt,x2) + e−2iϕ(vt,x2)

]
dV

= 0.

(111)

Eq. 111 satisfies condition Eq. 107 and shows that reflection positivity for wave

functions Eq. 105 with the inner product Eq. 106 is given.

This is important because, according to the Osterwalder-Schrader theorem

(Osterwalder & Schrader, 1973, 1975), a reflection-positive Euclidean field theory, when

Wick-rotated, results in a unitary quantum field theory to which the common path

integral formalism can be applied.

3.6.4 Time evolution and Wick rotation to a dynamic scattering theory The equation

for the stress tensor Eq. 97 involves compact Lie groups only, and is therefore

analytically continuable (Chevalley complexification). Thus, the time coordinate can

be Wick-rotated and restricted to complex values (Wick, 1954):

x1 −→ ivt t ∈ R. (112)

The Wick rotation for the Clifford algebra is nontrivial, and can be carried out

using the mechanism presented in van Nieuwenhuizen & Waldron (1996). This leads to

a rotation of iσ5
E
(Eq. 50) onto the basis vector f0

M
. Together with the conversion of the

Euclidean indices from a, b ∈ {1, 2} to the counting method in Minkowski space with

α, β ∈ {0, 1} this yields for the Euclidean basis vectors fkE (Eq. 44) when transformed

to the Minkowski basis fkM:
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iσ5
E −→ f0M = γ0 =

(
−i 0

0 i

)

f1E −→ f1M = γ1 =

(
0 1

1 0

)
,

(113)

with (γ0γ0) = −I and (γ1γ1) = I, which corresponds to a rotation into the

Minkowski space with metric tensor gαβ = diag(−1,+1).

The transformation rules for the further objects are:

ψ′a −→ ψα

ψ′
a = ψ′†

a σ
5 −→ −ψ†

αiγ
0 = −ψα

σ′
local −→ σM

local

G′U1
ab G′ ab

U1 −→ −GαβG
αβ

iωeff. = i
c1
x1

√
Re∞ −→ c1

vt

√
Re∞ =

c1
xM
0

√
Re∞ = ωeff..

(114)

Please note that the i in the shear term ωeff. vanishes upon Wick rotation due to

the dependence on x1. For Eq. 97, the Wick-rotated form is obtained:

tr
[
σM

local(r)
]
= −2π

3
(ReLdc)

−1ψα(r)
(
Iωeff. + vγβDβ

)
ψα(r)− 1

4
Gαβ(r)G

αβ(r).

(115)

As well as the Wick-rotated inner product:

〈
ψ,ϕ

〉
M

= (dSI

box)
−2

∫
Vbox

ψϕ dV = (dSI

box)
−2

∫
Vbox

ψ†γ0ϕ dV. (116)

With the Wick rotation, a relativistically covariant time evolution is introduced.

This aspect is further elaborated in the discussion (Par. 6.2).

3.6.5 Equation of momentum density and interpretation as Lagrangian density The

gradient of the stress tensor in Euclidean space by definition represents a force density

f (e.g. Eq. 5 in Part I), written in components ∂jσ
E
jk = fE

k .

With Wick rotation, the 0.-th spatial coordinate becomes the time coordinate.

Thus, in Minkowski space it holds that ∂0σ
M
0k = v−1∂tσ

M
0k = fM

k . Therefore v−1σM
0k is a

quantity whose time derivative forms a force density. On the other hand, by conservation

of momentum, a force density is equal to the time derivative of a momentum density

(ṗ = f), which means in consequence that v−1σM
0k = p can be interpreted as Wick-rotated

momentum density.

This interpretation can be extended to all components of σM

local if one considers that

in the initial state only the 0.-th component contributes and the further components

arise from this momentum-like state by rotations.
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For the case of constant velocity trajectories, one obtains the generalized momentum

density p(r) (Inserted from Eq. 115 and with keff. = v−1ωeff.):

p(r) = v−1tr
[
σM

local(r)
]

= −2π

3
(ReLdc)

−1ψα(r)
(
Ikeff. + γ

βDβ

)
ψα(r)− 1

4
v−1Gαβ(r)G

αβ(r)

= L(r).

(117)

Where in the last step of Eq. 117 it is used that the expression is a tensor density

and contains the information on the local momentum p of the system, which allows it

to be interpreted as the root of a Lagrangian density. This is again equivalent to the

interpretation as Lagrangian density L if trajectories along constant flow velocity are

considered (Rizzuti, Vasconcelos & Resende, 2019).

With this, the presented theory on fluid mechanics is put into a form which allows

a direct interpretation as a scattering theory, and to which the known mathematical

principles and solution approaches of quantum field theory can be applied.

4 First-order scattering theory for two-dimensional incompressible flows

With Eq. 117, a covariant field equation is developed, for which a quantized scattering

theory can be established (Osterwalder & Schrader, 1973, 1975). In this section the

details of the scattering theory are formulated.

The governing equation and the associated auxiliary quantities are summarized

briefly in Par. 4.1.1 for convenience. Then the individual terms of the equation are

considered separately and interpreted as laminar and vortical quasiparticles and their

interactions. The properties of the quasiparticles are identified and the corresponding

Green’s functions (propagators) are specified.

From this, invariant scattering amplitudes and cross sections are determined using

Feynman technology. The whole treatment is conducted as analogously as possible

to the standard literature, with adjustments where necessary. The main source for

definitions and basic quantities is Burgess & Moore (2006), which uses the same overall

metric sign as this manuscript. The calculation is performed analogously to Peskin &

Schroeder (1995) and Chiochia, Dissertori & Gehrmann (2010), with individual steps in

the calculation of the effective cross section adapted from the very detailed solutions in

Lawson (2014) and Millar (2014).

4.1 Basic quantities of the scattering theory

4.1.1 Governing equation, coupling constant and fluid quantum of action The

treatment of the scattering theory is based on Eq. 117, which has the form of a

Lagrangian density for a two-dimensional Dirac equation. This is emphasized by

adapting the nomenclature to standard quantum field theory:

L(r) = −ψα(r)
(
Imeff. + ℏfl /D

)
ψα(r)− 1

4
v−1Gαβ(r)G

αβ(r). (118)
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By comparing Eq. 118 with Eq. 117, the quantized fluid measures are defined. The

fluid quantum of action ℏfl is given by:

ℏfl =
2π

3
(ReLdc)

−1 =
2π

3
(ReCvx

M

0 )
−1, (119)

the effective mass meff., which is an auxiliary quantity to approximate the local

velocity gradient in the initial laminar boundary layer, reads:

meff. = ℏflkeff. =
2π

3

c1
ReLdcvxM

0

√
Re∞ , (120)

and accordingly the effective wavenumber is (definition in Par. 3.6.5):

keff. = v−1ωeff. = c1 (vx
M

0 )
−1
√
Re∞ . (121)

The underlying numerical parameters are determined according to their definitions in

Par. 3.4 and Par. 3.3 for the dimensionless box radius dc. The local Reynolds number

ReL is considered constant over a box (xM
0 ≫ dSI

box). The relations between the different

Reynolds numbers introduced are:

ReC =
ρSIvSI

∞l
SI
c

µSI
Re∞ =

ReC
dc

xM

0 ReL =
ReCv

dc
xM

0 , (122)

where ReC denotes the characteristic Reynolds number (Eq. 3 in Part I), Re∞ denotes

the Reynolds number at infinite distance from the plate (Eq. 83) and ReL the local

Reynolds number (Eq. 96).

Furthermore, Feynman slash notation is used:

/D = γβDβ, (123)

with the covariant derivative D and the local coupling to the phase field A⊥ (see

Eq. 98):

D = ∇− igA⊥(r) g =
3

4
√
2

√
ReL A⊥ = ∇ϕ(r), (124)

Finally, the Dirac-adjoint wave function is used as a shortcut (see Eq. 114):

ψα(r) = ψ
†
α(r)iγ

0, (125)

as well as the gamma matrices γβ and the unit matrix I in two dimensions (Eq. 113):

γ0 =

(
−i 0

0 i

)
γ1 =

(
0 1

1 0

)
I =

(
1 0

0 1

)
. (126)
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4.1.2 Individual terms and interpretation Expression Eq. 118 is separated into the

following parts:

L = Llaminar
0 + Lvortex

0 + L′ (127)

Llaminar
0 = −ψα(r)

(
Imeff. + ℏfl /∂

)
ψα(r) (128)

Lvortex
0 = −1

4
v−1Gαβ(r)G

αβ(r) (129)

L′ = iqψα(r) /A⊥(r)ψ
α(r). (130)

Where the fluid charge was defined as an auxiliary quantity:

q = ℏfl g. (131)

The term Llaminar
0 (Eq. 128) is rotation-free (see Section 3 in Part I) and is

interpreted as a field of laminar flowing particles, with the particles referred to as

“laminar (pseudo-)particles” or just “elementary laminars”.

Lvortex
0 (Eq. 129) forms a pure rotational field and is interpreted as a field of

elementary vortices. L′ (Eq. 130) constitutes the coupling of the two fields. The

individual terms, their properties and interpretation are considered in detail in the

following paragraphs.

4.2 Properties of the fields and propagators

4.2.1 Properties and propagator of the free laminar field The Lagrangian density for

elementary laminars Eq. 128 is examined in detail:

Llaminar
0 = −ψα(r)

(
Imeff. + ℏfl /∂

)
ψα(r), (132)

with the corresponding equation of motion (Euler-Lagrange formalism):(
Imeff. + ℏfl /∂

)
ψα(r) = 0. (133)

The solution approach is done in analogy to the solution of a Dirac equation. First,

the kinematic momentum #»p ∈ C of a laminar particle, together with an inner product

is needed:

#»p = ipx + py with #»p · #»q = Re(p∗q) = pxqx + pyqy. (134)

Based on this, a two-momentum p ∈ C2 is defined in analogy to the four-momentum

of quantum electrodynamics according to:

p =

(
p0

p1

)
=

(√
m2

eff. +
#»p 2

ipx + py

)
, (135)
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In addition to the kinematic momentum #»p , the two-momentum also contains meff.

as an auxiliary quantity, which is interpreted as the rest momentum.

For two two-vectors p,q according to definition Eq. 135, a Lorentzian inner product

can be defined with (extended to C2 e.g. Friedman 2008):

p · q = Re(gαβp
∗αqβ) =

1

2
gαβ
(
p∗αqβ + pαq∗β

)
α, β ∈ {0, 1}. (136)

Where gαβ = diag(−1,+1) is used as seen in Par. 3.6.4. With this, the on shell

condition holds as well:

p · p = Re(−m2
eff. − #»p 2 + #»p 2) = −m2

eff.. (137)

Regarding the specific example, the two-momentum can be given in the rest frame of

an undisturbed laminar particle, i.e. in the inertial frame traveling with the base flow.

For the initial two-momentum p as well as the final two-momentum p′ after scattering,

it is valid that:

p =

(
meff.

0

)
p′ =

(√
m2

eff. + ( #»p ′)2

#»p ′

)
. (138)

By means of the two-momentum Eq. 135, two solution approaches for the equation

of motion Eq. 133 with positive and negative frequency can be formulated respectively:

ψ0(r) =
1√
2p0

u(p)ei(p·r)(ℏfl d
SI
box)

−1

ψ1(r) =
1√
2p0

v(p)e−i(p·r)(ℏfl dSI
box)

−1

.

(139)

Whereby the scalar product Eq. 116 determines the periodicity of the exponent.

Inserting ansatz Eq. 139 into Eq. 133 yields the equations of motion in momentum

space: (
Imeff. + i/p

)
u(p) = 0

(
Imeff. − i/p

)
v(p) = 0. (140)

For the normalization of the solutions of Eqs. 140 in momentum space it holds true

that (Burgess & Moore, 2006):

u(p)u(p) = 2meff. v(p)v(p) = −2meff.. (141)

Therefore the following applies for the completeness relations (the additional spin

sum is omitted in the two-dimensional case):

u(p)u(p) = Imeff. − i/p v(p)v(p) = −(Imeff. + i/p). (142)

From the one-particle solutions Eq. 139 of equation of motion Eq. 133, multi-

particle solutions are constructed by linear combination:

ψ(r) =

∫
dp

2π
√

2p0

(
a(p)u(p)ei(p·r)(ℏfl d

SI
box)

−1

+ b†(p)v(p)e−i(p·r)(ℏfl dSI
box)

−1
)
, (143)
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ψ(r) =

∫
dp

2π
√

2p0

(
a†(p)u(p)e−i(p·r)(ℏfl dSI

box)
−1

+ b(p)v(p)ei(p·r)(ℏfl d
SI
box)

−1
)
. (144)

Where the amplitudes a(p) and b(p) are promoted to operators, satisfying the

anticommutation relation:

{a(p), a†(p′)} = 2πδ(p− p′) {b(p), b†(p′)} = 2πδ(p− p′). (145)

Consequently, the solution fields become operator-valued as well and form a

quantum field:

{ψ(r),ψ(r′)} = γ0δ(r− r′) {ψ(r),ψ(r′)} = 0. (146)

Eventually, the propagator is needed for the scattering theory, which is given by:

SF (r) = lim
ϵ→0

∫
d2p

(2π)2
ei(p·r)(ℏfl d

SI
box)

−1 −i/p+ Imeff.

p2 +m2
eff. − iϵ

. (147)

The latter forms the Green’s function to the equation of motion of the free laminar

field in position space (Eq. 133):(
Imeff. + ℏfl /∂

)
SF (r) = Iδ2(r). (148)

In momentum space, the propagator reads:

SF (p) =
−i(−i/p+ Imeff.)

p2 +m2
eff. − iϵ

. (149)

The Feynman rules derived in this section are presented in Table 1.

4.2.2 Properties of the free vortex field The Lagrangian density of the vortex field is

(Eq. 129):

Lvortex
0 = −1

4
v−1Gαβ(r)G

αβ(r). (150)

For the ansatz, in analogy to Eq. 135 based on the wave vector
#»

k , a two-wave

vector is defined as an auxiliary quantity:

k =

(
k
#»

k

)
k′ =

(
k′
#»

k ′

)
, (151)

where k = | #»

k | is the magnitude of the wave vector. k denotes the two-wave vector

before and k′ after scattering, again applied to the specific example. For the two-wave

vector, using Eq. 136, the on shell condition reads:
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Feynman rules for laminars

incoming laminar u(p)

outgoing laminar u(p)

laminar propagator
−i(−i/p+ Imeff.)

p2 +m2
eff. − iϵ

Table 1: Feynman rules in momentum space for elementary laminar pseudo-particles.

k2 = (k′)2 = 0. (152)

Since Eq. 150 is defined with respect to a finite box, the vortex field can be

quantized and takes the following form as an operator field:

A(r) =

∫
dk

2π
√
2ω

(
a(k)ε(k)eik·r/d

SI
box + a†(k)ε†(k)e−ik·r/dSI

box

)
, (153)

in which the angular frequency ω = v|k| was used. The amplitudes a(k) are

regarded as operators satisfying the commutation relation:[
a(k), a†(k′)

]
= 2πδ(k− k′). (154)

In two dimensions there is only one polarization direction ε(k), so the additional

summation over the polarizations is omitted. Therefore, the following normalization

is valid:

ε∗α(k)ε
α(k) = 1, (155)

as well as the completeness relation (polarization sum):

εα(k)ε
∗
β(k) = gαβ as well as εα(k)ε∗β(k) = gαβ = δαβ . (156)

Finally, the Hamiltonian of vortex quasiparticles Eq. 150 can be expressed as:

Hvortex
0 = v−1

∫
dk

2π
√
2ω

ℏflω
(
a†(k)a(k) +

1

2

)
=

∫
dk

2π
√
2ω

ℏfl k
(
a†(k)a(k) +

1

2

)
,

(157)
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Feynman rules for vortices

incoming vortex εα(k)

outgoing vortex ε∗α(k)

Table 2: Feynman rules in momentum space for elementary vortex pseudo-particles.

which corresponds to the momentum density of single quanta with momentum

magnitude given by:

pvortex = ℏfl k. (158)

The Feynman rules derived in this section are presented in Table 2.

Remark 9 (Transformation properties under time inversion) Due to the defi-

nition of the time axis parallel to the base flow direction, it is possible that the elementary

vortices move in reversed time direction after the scattering process. This happens in the

rest frame of the elementary laminar if the scattering angle θ > π/2 (Fig. 6). The be-

havior of the vortex field under time inversion is briefly investigated in order to estimate

the effect on the effective cross section later.

Since the polarization ε is to be preserved under time inversion xM
0 = vt → −vt,

the second coordinate xM
1 must be inverted, because sgn(ε) = sgn(xM

0 × xM

1 ). This is

possible due to the axial symmetry of the scattering cross section around the xM
0 axis,

whereby the substitution xM
1 → −xM

1 leaves the scattering cross section invariant.

The creation and annihilation operators Eq. 154 remain constant under time

inversion due to the symmetry of the delta distribution δ(−x) = δ(x), which allows

the time-inverted vortex field
⌣
A to be given as:

⌣
A(r) =

∫
dk

2π
√
2ω

(
a(k)ε(k)e−ik·r/dSI

box + a†(k)ε†(k)eik·r/d
SI
box

)
. (159)

I.e. time inversion swaps the signs of the exponents. On the other hand, field
⌣
A in

Eq. 159 is equal to the original vortex field A (Eq. 153) with inverted sign of the metric

tensor gαβ → −gαβ =
⌣gαβ (Burgess & Moore, 2006).

Therefore, if the elementary vortex in the scattering process reverses the direction

of motion with respect to the time axis, this can be mapped by using the time-inverted

completeness relation for the outgoing elementary vortex:

⌣εα(k)
⌣ε
∗
β(k) =

⌣gαβ = −gαβ as well as
⌣ε
α
(k)

⌣ε
∗
β(k) = gαγ

⌣gγβ = −δαβ . (160)
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Feynman rules for vertices

vertex laminar-vortex-laminar qγβ

Table 3: Feynman rule in momentum space for vertices.
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Figure 5: First-order Feynman diagrams contributing to the invariant matrix element M =

M1 + M2 of the scattering of an elementary vortex by a laminar particle. a) shows the

contribution M1, b) the contribution M2.

4.2.3 Vertices The interaction Lagrangian density L′ (Eq. 130) forms the minimum

coupling of the laminar and vortex fields:

L′ = iqψα(r)γ
βA⊥

β (r)ψ
α(r). (161)

In momentum space, the contribution of the interaction term becomes:

jβ = qγβ, (162)

with the fluid charge q according to definition Eq. 131. The derived Feynman rule

for vertices is shown in Table 3.

4.3 Scattering amplitude/ invariant matrix element M

4.3.1 Relevant Feynman diagrams The two-particle scattering process of an elemen-

tary vortex with an elementary laminar particle in first order perturbation theory is

considered. The corresponding Feynman diagrams are shown in Fig. 5.

These diagrams build the two-dimensional fluid equivalent of Compton scattering,

which serves as the template for this process.

4.3.2 Insertion into the invariant matrix element M The scattering amplitude,

expressed as an invariant matrix element M, is composed of the contributions of the

two Feynman graphs in Fig. 5:

M = M1 +M2. (163)
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The individual contributions are combined according to the definitions in Par. 4.2

and are given in momentum space by:

iM1 = −iq2ε∗α(k′)εβ(k)ū(p
′)
γα(−i/p− iℏfl/k + Imeff.)γ

β

(p+ ℏflk)2 +m2
eff.

u(p), (164)

iM2 = −iq2ε∗β(k′)εα(k)ū(p
′)
γβ(−i/p+ iℏfl/k

′
+ Imeff.)γ

α

(p− ℏflk′)2 +m2
eff.

u(p). (165)

4.4 Auxiliary quantities

For the calculation of an effective cross section from the invariant matrix elements Eqs.

164 and 165, a few additional relations from scattering theory are needed. These are

briefly introduced in this paragraph and adapted to the two-dimensional fluid case.

4.4.1 Mandelstam variables and deductions Mandelstam variables are defined for

general two-body to two-body scattering processes and are independent of the exact

configuration. For the scattering process of a laminar particle with two-momentum p

before the scattering process and p′ thereafter, and an elementary vortex with two-wave

vector k before and k′ afterwards, the Mandelstam variables are calculated as follows

(Burgess & Moore, 2006):

s = −(p+ ℏflk)2 = −(p′ + ℏflk′)2

t = −(p− p′)2 = −(ℏflk′ − ℏflk)2

u = −(p− ℏflk′)2 = −(p′ − ℏflk)2.
(166)

One implements the already defined two-momenta p and p′ from Eq. 138 and the

two-wave vectors k and k′ from Eq. 151 and obtains for the studied scattering process

in the rest frame of the laminar particle:

s = −2ℏfl(p · k) +m2
eff. = −2ℏfl(p′ · k′) +m2

eff. = 2meff.ℏflk +m2
eff.

t = 2(p · p′) + 2m2
eff. = 2ℏ2fl(k · k′) = 2ℏ2fl kk′(cos θ − 1)

u = 2ℏfl(p′ · k) +m2
eff. = 2ℏfl(p · k′) +m2

eff. = −2meff.ℏflk′ +m2
eff..

(167)

The geometry and scattering angle θ in the rest frame of the laminar particle (lab-

frame) are defined according to Fig. 6. In general, the following relation also holds for

the Mandelstam variables:

s+ t+ u = 2m2
eff., (168)

with which further relations can be derived in the rest frame of the laminar particle:

1

k
− 1

k′
=

ℏfl
meff.

(cos θ − 1), (169)
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ҧ𝑥0
𝑀 = 𝑣𝑡

ҧ𝑥1
𝑀

incident
elementary vortex

scattered
elementary vortex

scattered
elementary laminar

target
elementary laminar𝜃

Figure 6: Definition of the scattering angle θ in the rest frame of the laminar particle. The

resting laminar particle (dashed blue) is hit by an incoming elementary vortex from the right

against time direction (dashed gray). The angle between the incoming and outgoing elementary

vortices (gray) is defined as the scattering angle θ. For θ > π/2 the outgoing elementary vortex

travels with the time direction.

dt

d(cos θ)
= 2(ℏflk′)2. (170)

From Eq. 169, the ratio P between the vortex wavenumbers after and before the

collision can be determined:

P (k, xM

0 , θ) =
k′

k
=

1

1− ℏflk
meff.

(cos θ − 1)
, (171)

resulting in the momentum transfer ∆p during the impact:

∆p(k, xM

0 , θ) = ℏfl∆k = ℏfl(k − k′) = ℏflk
(
1− P (k, xM

0 , θ)
)
. (172)

4.4.2 trace techniques The matrices {γj} as specified in Eq. 126 are part of the

Clifford algebra Cl(2, 0) and form a basis of the subspace Cl1(2, 0) resp. Cl1(2) in the

analytic continuation. This property defines their behavior under permutation of the

individual terms in the evaluation of path integrals. The defining property reads (see

also Eq. 13):

γαγβ + γβγα = 2gαβI α, β = 0, 1. (173)

With the metric tensor gαβ = diag(−1,+1) (see Par. 3.6.4). The contractions needed

for evaluation are as follows in the two-dimensional case:

γαγα = 2I Tr(γαγα) = 4. (174)

The trace of the product of two gamma matrices can be determined by cyclic

permutation:

Tr(γαγβ) = Tr(
1

2
γαγβ +

1

2
γβγα) = gαβTr(I) = 2gαβ, (175)
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which for slashed quantities (/a = γαaα, see Eq. 123) means that:

Tr
(
Re(/a/b)

)
=Tr

(
γαγβRe(a∗αbβ)

)
=2gαβRe(a∗αbβ) = 2(a · b).

(176)

In the last step the scalar product Eq. 136 was used. Finally, the following

contraction is required:

γαγνγα = (2gανI− γνγα)γα = 2γνI− 2γνI = 0. (177)

Remark 10 This contraction Eq. 177 is different in the two-dimensional compared

to the four-dimensional case, where γνγαγν = −2γα, since there the summation is

done over 4 generators. This difference simplifies the calculation of the cross section

considerably compared to the four-dimensional case, because contributions of higher order

disappear.

For terms with an odd number of γ-matrices, it holds, as in the four-dimensional

case, that:

Tr(γα) = Tr(γαγβγδ) = ... = 0. (178)

4.5 Invariant matrix element squared, mixing terms

The squared unpolarized invariant matrix element |M|2 is calculated, which contains

the sum over all possible spin and polarization states s and p:

|M|2 =
∑

s,p,s′,p′

|M|2 . (179)

Based on the symmetries of the matrix elements of the individual Feynman

diagrams Eqs. 164 and 165, the squared unpolarized matrix element is calculated as:

|M|2 =
(
M1 +M2

) (
M1 +M2

)†
= |M1|2 + |M2|2 + 2Re

(
M1M†

2

)
. (180)

The expressions can be evaluated separately. First, |M1|2 is considered. The

corresponding polarized matrix element is (using cyclic permutation in the trace, as

well as on-shell conditions Eqs. 137 and 152 to simplify the denominator):

|M1|2 = q4Tr

[
εδ(k′)ε∗α(k

′)ε∗ζ(k)εβ(k)u(p
′)ū(p′)

γα(i/p+ iℏfl/k − Imeff.)γ
β

2ℏfl(p · k)

× u(p)ū(p)
γζ(i/p+ iℏfl/k − Imeff.)γδ

2ℏfl(p · k)

]
.

(181)
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In the transition to the unpolarized matrix element, the polarization and spin sums

allow the completeness relations 142 and 156 to be applied (the step is purely formal in

two dimensions, since in each case the summation is over a single spin and polarization

state):

|M1|2 =
q4

4ℏ2fl(p · k)2
Tr
[
γα(−i/p′ + Imeff.)γ

α(i/p+ iℏfl/k − Imeff.)

× γβ(−i/p+ Imeff.)γβ(i/p+ iℏfl/k − Imeff.)
]
.

(182)

To evaluate the gamma matrices outside the brackets γα and γβ, relations Eqs. 174

and 177 are used. This simplifies the equation significantly in the two-dimensional case

because of Remark 10:

|M1|2 =
q4

4ℏ2fl(p · k)2
Tr
[
2Imeff.(i/p+ iℏfl/k − Imeff.)

× 2Imeff.(i/p+ iℏfl/k − Imeff.)
]
.

(183)

The remainder is expanded and the trace is evaluated using relations Eqs. 174, 176

and again on shell conditions Eqs. 137 and 152:

|M1|2 =
q4

4ℏ2fl(p · k)2
[
16m4

eff. − 16m2
eff.ℏfl(p · k)− 8m2

eff.ℏ2fl(k · k)
]

=
q4

ℏ2fl(p · k)2
[
4m4

eff. − 4m2
eff.ℏfl(p · k)

]
.

(184)

Finally, the scalar products are evaluated by inserting the relations from Eq. 167:

|M1|2 =
q4

(meff.ℏflk)2
[
4m4

eff. + 4m3
eff.ℏflk

]
. (185)

The same principles can be applied to calculate the mixed element M1M†
2:

M1M†
2 =

q4

4ℏ2fl(p · k)(−p′ · k)
Tr
[
γα(−i/p′ + Imeff.)γ

α(i/p+ iℏfl/k − Imeff.)

× γβ(−i/p+ Imeff.)γβ(i/p− ℏfli/k
′ − Imeff.)

]. (186)

Evaluation of γα and γβ:

M1M†
2 =

−q4

4ℏ2fl(p · k)(p′ · k)
Tr
[
2Imeff.(i/p+ iℏfl/k − Imeff.)

× 2Imeff.(i/p− iℏfl/k
′ − Imeff.)

]. (187)
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Expand and evaluate the trace:

M1M†
2 =

−q4

4ℏ2fl(p · k)(p′ · k)

[
16m4

eff. − 8m2
eff.ℏfl(k · p)

+ 8m2
eff.ℏfl(k′ · p) + 8m2

eff.ℏ2fl(k · k′)
]. (188)

Compute the scalar products with the help of relations Eq. 167:

M1M†
2 =

−q4

m2
eff.ℏ2flkk′

[
4m4

eff. + 2m3
eff.ℏflk − 2m3

eff.ℏflk′ + 2m2
eff.ℏ2flkk′(cos θ − 1)

]
. (189)

Due to the symmetries presented in Par. 4.4.1, the matrix element |M2|2 can be

determined directly from |M1|2 by performing a substitution k → −k′:

|M2|2 =
q4

(meff.ℏflk′)2
[
4m4

eff. − 4m3
eff.ℏflk′

]
. (190)

To obtain the squared unpolarized invariant matrix element |M|2, Eqs. 185, 189

and 190 are substituted into Eq. 180. This expression is simplified using relation Eq.

169, and the following result is obtained:

|M|2 = 4q4
(
cos2 θ − cos θ

)
. (191)

4.6 Differential cross section

The cross section per momentum transfer for the two-particle scattering process is

calculated as a function of the invariant matrix element using (e.g. Chiochia, Dissertori

& Gehrmann 2010):

dσ

dt
=

1

16π(s−m2)2
|M|2 = 1

16π(2meff.ℏflk)2
|M|2. (192)

Where in the last step relation Eq. 167 was used. By means of Eq. 170 the angular

dependence of the differential cross section can be determined, and inserting matrix

element Eq. 191, one obtains:

dσ(k, xM
0 , θ)

d(cos θ)
=

2(ℏflk′)2

16π(2meff.ℏflk)2
|M|2 = q4

8πm2
eff.

(
k′

k

)2 (
cos2 θ − cos θ

)
. (193)

With aid of Eq. 171, the differential cross section can be expressed as a function of

ratio P and with respect to the solid angle element dΩ = −d(cos θ):

−dσ(k, x
M
0 , θ)

d(cos θ)
=
dσ(k, xM

0 , θ)

dΩ
=

q4

8πm2
eff.

P 2(k, xM

0 , θ)
(
cos θ − cos2 θ

)
. (194)
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Figure 7: Dependency of the differential cross section and momentum transfer from scattering

angle θ. Exemplary representation for numerical values as in the flight example (Table 5),

evaluated at position k = 250 and x1 = 0.6.

However, cross section Eq. 194 becomes negative for scattering angles θ > π/2.

One recalls in this regard Remark 9, which states that in this case the time-inverted

polarization sum for the outgoing elementary vortex Eq. 160 is to be used. This in

turn reverses the sign of the squared unpolarized matrix elements Eqs. 181 & 186 and

therefore of the cross section for θ > π/2. The cross section including the effect of time

inversion can thus be given as:

dσ(k, xM
0 , θ)

dΩ
=

q4

8πm2
eff.

P 2(k, xM

0 , θ)
∣∣cos θ − cos2 θ

∣∣ . (195)

The differential cross section Eq. 195 is shown in Fig. 7.

Remark 11 Due to the fact that both ℏfl (Eq. 119) and meff. (Eq. 120) depend on the

value of coordinate xM
0 , the cross section Eq. 195 is a function of the position xM

0 in

flow direction. This is not a problem as long as the dependency is sufficiently weak such

that the cross section can be assumed to be approximately constant over a box (see Par.

3.5).

5 Model and results

In this section, a model for the formation of TS waves is created by applying the proposed

theory, and results are calculated for a specific example.

The idea of the model is that there are both elementary laminar and vortex particles

according to Section 4 in the flow above the plate. These particles scatter among

themselves. In the process of scattering, the wavenumbers of elementary vortices can

be lowered and their rotation is gradually slowed down by repeated collisions. Since the

effect is stronger for elementary vortices with high wavenumbers, the wavenumbers and

thus the frequencies of individual vortices become more and more equal. The resulting

resonance in the occupation number of elementary vortices with certain frequencies is
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then interpreted classically as an amplification of these frequencies and is identified with

the amplification factor n from eN -theory.

The model considers only scattering events along a profile of constant velocity and

with maximum amount of wavenumber transferred. Therefore, the first two modeling

steps consist of finding the height in the velocity profile (Par. 5.1) and the local

scattering angle (Par. 5.2) including the most scattering events with the largest transfer

of wavenumber.

Taking into account the surroundings of the particles in Par. 5.3, the probability

of wavenumber transmission per collision is estimated, which is then used to calculate

the change in occupation number – and consequently the amplification – of different

frequencies in Par. 5.4.

As a result, an analytical expression for the maximum amplification factor N(x1)

as a function of position x1 is derived, together with an approximate formula for the

transition point xSc
trans. at which the maximum amplification factor exceeds a fixed value

(e.g. N = 9) in Par. 5.5. The model is computed exemplarily with numerical values

corresponding to the introductory examples (Fig. 2).

Nomenclature: In order to achieve conformity with fluid mechanical literature, the

notation in Euclidean space is applied with the value of the dimensionless coordinate

x1 in the direction of the flow. Since only scalar quantities at fixed times are used, the

transformation fromMinkowski to Euclidean space is straightforward with a substitution

xM
0 → x1.

5.1 Estimating the distribution of elementary vortices in the boundary layer

5.1.1 Plate front as a source of elementary vortices Since the scattering theory is

formulated for a thin layer with constant flow velocity only, the height h in the velocity

profile of the boundary layer is sought at which the maximum amount of scattering

events can be expected. Because both a laminar particle and an elementary vortex are

required as input quantities for a scattering process, most events will occur where both

types of particles are mixed. Consequently, a practical consideration for the distribution

of elementary vortices and laminar particles in the boundary layer is needed.

In the model, the front of the plate at coordinate origin is taken as a point source

for elementary vortices. This is equivalent to the assumption that laminar particles

from the free flow hit the front with an average velocity vSI
∞ (see also Fig. 1), and their

momentum is converted virtually completely into angular momentum. After formation,

the resulting elementary vortices are positioned near the plate surface and move into

the boundary layer by diffusion or residual momentum.

Therefore, only elementary vortices are present directly above the plate surface,

and their concentration decreases with increasing distance η from the plate, while the

undisturbed volume flux – consisting of laminar particles – increases with distance from

the surface (Fig. 8a).

Transferred to the continuous model of the boundary layer, the elementary vortices
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Figure 8: a) Schematic representation of the distribution of laminar particles and elementary

vortices in the boundary layer. In reality, mixed particles with a wide range of momentum

and angular momentum are to be expected. b) Model assumption: The particles occur in an

ordered fashion and as pure laminars or vortices. Since the laminar particles contain all the

momentum, their lower limit corresponds to the momentum thickness δ2. c) Transfer of this

situation to the concentrations/ amount fractions of laminar and vortex particles cL and cω
(indicated with separate scales). These take the form of Heaviside step functions.

form the velocity defect caused by the plate. The local flow velocity thus becomes a

measure of the respective proportions of laminar and vortex particles, which can be

expressed as amount fractions cL and cω. For ideal collision conditions, one searches for

the height in the profile at which the amount fractions of laminar and vortex particles

are equal:

cL = cω = 0.5. (196)

5.1.2 Simplification as Heaviside step function The simplification is achieved by

assuming that the transition from vortical to laminar particles with increasing height in

the profile is not continuous, but approximated as a Heaviside step function at height

h (Fig. 8b), with the amount fractions cL and cω as a function of the profile height xSI
2

(schematically shown in Fig. 8c):

cL(x
SI

2 ) =


1 xSI

2 > h

0.5 xSI
2 = h

0 xSI
2 < h

cω(x
SI

2 ) =


0 xSI

2 > h

0.5 xSI
2 = h

1 xSI
2 < h

(197)

In this simplified situation, condition Eq. 196 is satisfied at the height of the step

h and all scattering events take place at this height.

5.1.3 Determination of h According to the model assumption, only the laminar

particles possess momentum, while the vortex particles are equipped solely with angular
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momentum. Therefore, in the approximation with the Heaviside velocity profile

according to Par. 5.1.2, the total momentum flux is found above height h.

Since this flow is composed of laminar particles alone, it is an undisturbed flow with

h as the lower edge (Fig. 8b), which in fact corresponds to the definition of momentum

thickness δ2 (see e.g. Schlichting & Gersten 2017). Thus, height h of the step can be

equated with the momentum thickness δ2, which in the initial laminar boundary layer

is given by:

h = δ2 = 0.664

√
µSIxSI

1

ρSIvSI
∞
. (198)

The scattering theory is therefore applied at height of the momentum thickness δ2
Eq. 198 (red dashed line in Figs. 1 and 4). As required, the dimensionless velocity v

relevant for the scattering theory is constant at this height and given by:

v =
vSI

vSI
∞

= 0.664 · c1 = 0.664 · 0.332 = 0.220. (199)

5.2 Simplification: Scattering angle with maximum wavenumber transfer

The different types of particles in the boundary layer scatter among themselves, with

first-order processes according to Feynman graphs Fig. 5 describing the scattering

process between a laminar and a vortex particle. In this process, the wavenumber

k = |k| of the elementary vortex decreases during the collision (analogous to Compton

scattering in quantum mechanics).

A simplification is achieved by considering only those scattering events with

maximum wavenumber transfer ∆k. The angular dependency of wavenumber transfer

is given by (according to Eq. 172):

∆k(k, x1, θ) =
∆p(k, x1, θ)

ℏfl
= k

(
1− P (k, x1, θ)

)
, (200)

as a function of the wavenumber ratio P after and before scattering according to

Eq. 171. The wavenumber transfer is illustrated in Fig. 7. The largest transmission

occurs at a scattering angle of 180◦ and it is set:

θmax = π. (201)

One obtains the maximum quantities by substituting angle Eq. 201 into the

respective definitions. The ratio Pθmax at maximum scattering angle (from Eq. 171)

is given by:

Pθmax(k, x1) = P (k, x1, θmax) =

(
1 +

2ℏflk
meff.

)−1

. (202)



45

From that, the maximum wavenumber transmission per scattering event ∆kmax

(from Eq. 200):

∆kmax(k, x1) = k
(
1− Pθmax(k, x1)

)
, (203)

as well as the cross section dσθmax as a function of Pθmax at maximum scattering

angle Eq. 201 inserted into Eq. 195 yields:

dσθmax(k, x1) =
dσ(k, x1, θ)

dΩ

∣∣∣
θ=θmax

=
q4

4πm2
eff.

(
Pθmax(k, x1)

)2
. (204)

5.3 Estimating the probability of wavenumber transmission

In case of a scattering event, the wavenumber k of the elementary vortex is reduced by

∆k. However, this is only valid under the assumption of a free laminar particle as a

collision partner. If the environment of the laminar particle is taken into account, local

friction can prevent the wavenumber transfer. By briefly evaluating the surroundings of

a laminar particle in the boundary layer, the probability of wavenumber transmission

can be estimated.

The laminar boundary layer forms a shear flow of layers which slide over one

another at different velocities. Relative to a single fluid molecule, which is assumed

to be spherical or cylindrical, this situation can be described as shown in Fig. 4b.

In the rest frame of the particle, the upper and lower layers slide over the particle

with velocities of ±∆v. This sliding motion changes into a rolling motion if the rolling

condition is satisfied:

∆ω =
∆v

√
π
2
rp

=
4∆v√
π dbox

, (205)

where the stretched dimensionless particle radius rp =
dcrSI

p

lSI
c

was used (dc is defined

according to Eq. 72). The model assumption is therefore that a transfer of angular

frequency to the laminar particle only occurs if the local velocity gradient is overcome.

In the sphere or cylinder model this means that rolling condition Eq. 205 is fulfilled.

The magnitude of the velocity gradient acting on the particle is decisive in this

case. Fortunately, its value has already been estimated by the effective vorticity ωeff.

(Eq. 86), where the change in velocity over a box is given by:

ωeff. =
∂v

∂x2
≈ 2∆v

2
√
π
2
rp

=
4∆v√
π dbox

, (206)

which can be directly inserted into rolling condition Eq. 205 and formulated in terms

of wave numbers k = ω/v:

∆k = keff., (207)

with keff. according to Eq. 121. The probability that rolling condition Eq. 207 is

satisfied can be determined from two quantities.



46

First, by the average number of scattering events s needed to transfer the required

amount of wavenumber, given by the ratio of required (Eq. 207) to transferred

wavenumber (Eq. 200):

s(k, x1, θ) =
keff.

∆k(k, x1, θ)
=

keff.
k (1− P (k, x1, θ))

, (208)

and evaluated in the simplified model for the scattering angle with largest

momentum transfer θmax (Eq. 203):

sθmax(k, x1) = s(k, x1, θmax) =
keff.

k (1− Pθmax(k, x1))
. (209)

Secondly, by the probability of a scattering event given by the differential cross

section dσ
dΩ

(Eq. 195). From these two quantities, the probability Φ of a wavenumber

transfer can be given as:

Φ(k, x1, θ) =

[
dσ(k, x1, θ)

dΩ

]s(k, x1, θ)
, (210)

and again evaluated at θmax (with Eq. 204):

Φθmax(k, x1) =
[
dσθmax(k, x1)

]sθmax(k, x1)
. (211)

5.4 Change of state probability & amplification

An elementary vortex state ε(k) is formed when a state with higher wavenumber

ε(k + ∆k) is subjected to a collision, reducing the wavenumber by ∆k. This occurs

according to Eq. 211 with a probability of Φθmax(k +∆k, x1). Meanwhile, the resulting

state ε(k) can decay further with probability Φθmax(k, x1).

For many collisions, this results in a statistical change of the occupation number for

state n′(k, x1), normalized per unit momentum and at a fixed time (x1 = vt = const.):

n′(k, x1)
x1=const

=
Φθmax(k +∆k, x1)− Φθmax(k, x1)

ℏfl∆k
≈ ℏ−1

fl

∂Φθmax(k, x1)

∂k
. (212)

I.e. if many scattering processes take place, the occupation number is proportional

to the difference between creation and decay probability, which corresponds to the

partial derivative of Φθmax with respect to k.

Interpreted classically, this increase in the occupation number corresponds to an

amplification of the associated wavenumbers. Thereby, the application of scattering

theory ensures the summation over all possible reaction paths.

The initial state of a collision is formed by a laminar particle and an elementary

vortex (Fig. 5). The number of expected collisions therefore is proportional to the

respective amount fractions cL and cω of these particles per volume considered in position

space. The amount fractions are given in the model by Eq. 196. The conversion from



47

volume in momentum space to position space is done at a fixed time by means of the

density of states D(k) (one-dimensional case, no additional degrees of freedom):

D(k) =
1

V 1d

∂Z1d
m (k)

∂k
=

1

L

L

2π
=

1

2πdc
, (213)

where the one-dimensional microcanonical partition function without additional

degrees of freedom Z1d
m (k) = kL

2π
was used. The wavenumber-dependent occupation

number n(k, x1) after a distance x1 of collisions is thus obtained based on the occupation

number n′ in momentum space (Eq. 212), taking into account the initial concentrations

and expressed as density in position space:

n(k, x1) = cLcωD(k)n′(k, x1) =
cLcω

2πdcℏfl
∂Φθmax(k, x1)

∂k
. (214)

Consequently, if interpreted classically, the occupation number n(k, x1) according

to Eq. 214 corresponds to the amplification factor n for single frequencies of eN -theory

(see e.g. van Ingen 2008 or Simon 2017).

5.4.1 Fluid mechanical interpretation and Schmidt number If in Eq. 214 the fluid

action is written out ℏfl = 2π
3
(ReLdc)

−1 (Eq. 119), an interesting interpretation for the

amplification factor emerges:

n(k, x1) = ReL
3cLcω
4π2

∂Φθmax(k, x1)

∂k

=
1

νL

3cLcω
4π2

∂Φθmax(k, x1)

∂k
.

(215)

The amplification factor n is inversely proportional to the local, nondimensionalized

kinematic viscosity νL = Re−1
L (compare Eq. 4 in Part I). Since at the same time the

kinematic viscosity is a measure for possible diffusive momentum transport (momentum

diffusivity) (Bergman et al., 2018), the amplification factor can be seen as the ratio

between generated momentum and transportable diffusive momentum. For n > 1, more

momentum is generated than can be diffusively transported. This means that for n > 1

convective transport must begin, which together with the internal angular momentum

of elementary vortices can lead to convective rotational motion and thus to macroscopic

vortex formation.

In this interpretation, however, it is assumed that diffusive momentum transport

is equivalent to diffusive mass transport (mass diffusivity). This is usually the case

in gases, but does not apply to fluids in general. The measure for the ratio between

momentum- and mass-diffusivity in a given fluid is the Schmidt number Sc (Bergman

et al., 2018):

Sc =
νL

D
. (216)
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Where D denotes the nondimensionalized diffusion coefficient for mass diffusivity,

and in gases it usually holds that Sc ≈ 1. For vortex formation, the mass diffusivity

should be the decisive quantity, hence the somewhat more general Schmidt-corrected

amplification factor nSc is introduced:

nSc(k, x1) = Sc · n(k, x1) =
cLcωSc

2πdcℏfl
∂Φθmax(k, x1)

∂k
. (217)

5.5 Results

5.5.1 Notation and result types The presented model provides two types of results:

First, by calculating Eq. 217, analytical expressions for the amplification factor n,

the maximally amplified wavenumber kmax, the maximum amplification factor N and

the transition point xtrans. are given. These expressions are written in the general,

nondimensionalized form.

To obtain compact expressions, several terms closely related to the ratio of ingoing

vortex to laminar momentum
ℏflk
meff.

are combined as shorthand notations:

k1 =
ℏflk
meff.

=
k

keff.
= c2k

√
x1 . (218)

k2 = 1 + 2k1 = 1 + 2c2k
√
x1 . (219)

k3 =
c1k2

√
ReC

v
√
c3x1

=
c1(1 + 2c2k

√
x1 )

√
ReC

v
√
c3x1

. (220)

Further short notations and parameters are shown in Table 4. A detailed calculation

of the results can be found in the commented Mathematica code in the supplementary

materials.

Second, two examples with numerical input values are calculated and plotted in Fig.

9. The experimental input values are summarized in Table 5 and are chosen to match

the introductory examples in Fig. 2 as closely as possible.

To facilitate comparison with the introductory examples, the nondimensionalized

wavenumbers k are converted to frequencies νSI with dimension. The scaling to

dimensionless frequencies is thereby done by the Strouhal number Sr (Özgen, 2004;

Drazin & Riley, 2006). With the nondimensionalization according to Par. 3.5 and

considering the covariant derivative in time direction v−1∂t inserted in Eq. 5 in Part I,

the following relations are obtained for the dimensionless angular frequency ω and the

dimensionless wave number k = ω/v:

ω = 2πSr∞ =
xSI
1 ω

SI

vSI
∞

and k = 2πSrL =
xSI
1 ω

SI

vSI
. (221)
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parameter symbol formula definition

dimensionless inverse velocity profile gradient c1 0.332 Eq. 84

coefficient for ratio k1 c2
dcv

c1
√
ReC

Eq. 218

numerical prefactor in the differential cross section c3
9π
1024

Eq. 220

dimensionless box length dc
dSI
box

2rSI
p

Eq. 72

chord Reynolds number ReC
ρSIvSI

∞ lSI
c

µSI Eq. 122

dimensionless velocity along scattering profile v 0.220 Eq. 199

Table 4: Shorthand notations and parameters used in this section. Dimensional quantities are

marked with a superscript ()SI .

input quantity symbol wind tunnel test flight unit

freestream velocity vSI
∞ 14 41 m/s

dyn. viscosity ηSI 19.6 · 10−6 14.9 · 10−6 Pa · s
chord lengtha lSI

c 1 1.35 m

densityb ρSI
∞ 1.225 1.007 kg/m3

mean free pathb,c dSI
box 67 · 10−9 81 · 10−9 m

mean radius of an air particlec rSI
p 0.182 · 10−9 0.182 · 10−9 m

const. wave number for k03 k0 250 250 −
const. distance for k03 x01 0.6 0.6 −
Schmidt number Sc 1 1 −

Table 5: Numerical input values used in the calculation of the examples.
a Since lSI

c acts as a scaling factor of the x1 axis, inserting lSI
c = 1m corresponds to an unscaled

representation. b Numerical values are estimated for standard atmosphere at 0m.a.s.l. (wind tunnel)

and 2′000m.a.s.l. (flight). (EngineeringToolBox, 2003; Czernia, 2022). c Kinetic radius of nitrogen N2

(Ismail, Khulbe & Matsuura, 2015).

Thereby, vSI = vvSI
∞ denotes the dimensional local velocity, Sr∞ the Strouhal

number at infinite distance from the plate, and SrL the local Strouhal number:

Sr∞ =
xSI
1 ν

SI

vSI
∞

and SrL =
xSI
1 ν

SI

vSI
. (222)

The substitution to the dimensional frequency νSI is thus given by:

k → 2πxSI
1

vSI
νSI. (223)

5.5.2 Amplification factor nSc The amplification factor is determined by substituting

Eq. 211 into Eq. 217 and yields with the shortcuts introduced in Par. 5.5.1:
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Figure 9: Results for the two experimental setups according to Table 5, wind tunnel values

on the left and test flight values on the right. The amplification factor nSc is depicted using

yellow-red-black contours, the maximum amplified frequency νSImax is superimposed with the

light blue dashed line. The two vertical arrows in the flight example denote the transition

point xSc
trans. at Ntrans. = 9. For comparison with the introductory examples in Fig. 2, the

instability zones are indicated using black contours, where the contours are plotted at function

values {9, 9.5, 10}. The instability maximum (black dashed line) is determined numerically and

applied for comparison.

nSc(k, x1) =
3c1cLcωRe

3/2
C Sc

2π2dc

√
x1
k2

k
−sθmax
3

[
− 1 + (k−1

1 + 1) ln(k3)
]
. (224)

As a function of dimensional quantities to visualize the numerical examples, the

amplification factor reads (substitution according to Eq. 223):

nSc(νSI, x1) =
3c1cLcωRe

3/2
C (vSI)2Sc

8π4dc(lSI
c )2

(νSI)−2x
−3/2
1 k

−sθmax
3

[
− 1 + (k−1

1 + 1) ln(k3)
]
.

(225)

The amplification factor according to Eq. 225 is plotted using yellow-red-black

contours for the two experimental setups according to Table 5 in Fig. 9.

5.5.3 Approximation for the calculation of the maximum amplified wavenumber and

the transition point In the case where ratio k1 (Eq. 218) between wavenumbers of

incoming elementary vortices and the velocity gradient is large, an analytical expression

can be given for the maximum amplified wavenumber kmax as a function of x1. The

approximation for large k1 involves three components:

• The ratio is sufficiently large, i.e. k1 =
k

keff.
= c2k

√
x1 ≫ 3

2
.

• This causes the logarithm ln(k3) in Eq. 224 to be sufficiently large, namely

ln(k3) ≫ 3.

• In addition, this logarithm only changes marginally in the range considered, which

allows it to be assumed constant, ln(k3) ≈ const. This is introduced by substituting
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a constant k03 in place of k3:

ln(k3) → ln(k03) with k03 =
c1(1 + 2c2k

0
√
x01 )

√
ReC

v
√
c3x01

. (226)

Thereby, the k- and x1-dependency within the logarithm is replaced by constant

terms k0 and x01, which allows the sought expressions to be resolved for k and

x1. The constant terms are listed in Table 5 and are chosen to be in the range

of transition. As requested, the dependence of the numerical results on these

parameters is weak, but they may need to be adjusted for different fluids.

5.5.4 Approximated max. amplified wavenumber kmax and frequency νSImax The

maximum amplified wavenumber kmax at fixed coordinate x1 is found by zeroing the

partial derivative of the amplification factor (Eq. 224) according to ∂nSc(k, x1)/∂k = 0,

with the result:

kmax(x1) ≈
k1≫ 3

2

c1 ln(k
0
3)
√
ReC

dcv
x
−1/2
1 , (227)

where the approximation from Par. 5.5.3 was applied. The maximum amplified

dimensional frequency νSI
max is given accordingly (substitution as per Eq. 223):

νSI

max(x1) ≈
k1≫ 3

2

c1 ln(k
0
3)
√
ReC v

SI
∞

2πdc lSI
c

x
−3/2
1 . (228)

The maximum amplified frequency Eq. 228 is displayed in Fig. 9 with the light

blue dashed line. For the specific wind tunnel (wt) and flight examples, simplified

formulae for this curve can be given by inserting some of the numerical quantities of

weak dependency:

kwt
max(x1) ≈ 0.109

√
ReC x

−1/2
1

kflightmax (x1) ≈ 0.0912
√
ReC x

−1/2
1 ,

(229)

as well as with dimensional units:

νSI,wt
max (x1) ≈

0.0038
√
ReC v

SI
∞

lSI
c

x
−3/2
1

νSI,f light
max (x1) ≈

0.00319
√
ReC v

SI
∞

lSI
c

x
−3/2
1 .

(230)

5.5.5 Approximated max. amplification factor NSc Substituting the maximum

amplified wavenumber Eq. 227 into the amplification factor Eq. 224 yields the maximum

amplification factor N as a function of the position coordinate:
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NSc(x1) ≈
k1≫ 3

2

3 · cLcωdcReCSc vx1√
c3 π2

(
v
√
c3x1

2c1
√
ReC ln k03

) 2+ln k03
ln k03

. (231)

The maximum amplification factor NSc according to Eq. 231 represents the

magnitude of the amplification factor n on the light blue dashed line defined by the

maximum amplified frequency νSI
max in Fig. 9. At the same time, it corresponds to the

N factor in eN -theory.

The simplified formulae for the amplification factor with parameters inserted are

as follows for the two examples:

NSc

wt(x1) ≈ 0.0336Re0.424C x1.581

NSc

flight(x1) ≈ 0.0405Re0.426C x1.571 .
(232)

5.5.6 Approximated transition point xSctrans. The transition point xSc
trans. is determined

by the maximum amplification factor N exceeding a certain numerical value Ntrans..

Usually, it is set to e.g. Ntrans. = 9. This is substituted into Eq. 231:

Ntrans. = NSc(xSc

trans.), (233)

and resolving to xSc
trans. gives the transition point:

xSc

trans.(Ntrans.) ≈
k1≫ 3

2

Re

2−ln k03
2+3 ln k03
C

[
2c1π

2Ntrans. ln(k
0
3)

3cLcωdcSc v2

(
2c1 ln(k

0
3)√

c3 v

) 2

ln k03

] 2 ln k03
2+3 ln k03

. (234)

xSc
trans. corresponds to the nondimensionalized coordinate. The transition point

xSc
trans. with Ntrans. = 9 is illustrated in Fig. 9 by the two vertical arrows, which are

drawn at the level of the maximum amplified frequency.

In both examples, the transition point with the numeric parameters inserted can

be expressed as:

xSc,wt
trans.(Ntrans.) ≈ 8.61N0.635

trans.Re
−0.269
C = 0.870m

xSc,f light
trans. (Ntrans.) ≈ 7.67N0.635

trans.Re
−0.270
C = 0.698m = 0.517 lSI

c .
(235)

The approximated formula results in the determined transition point being slightly

shifted upstream compared to the actual contour N = 9 as given by the original

amplification factor nSc.

5.5.7 Instability zone The instability zone ISc is determined by partial derivative of

the state amplification factor Eq. 225 with respect to x1:

ISc(νSI, x1) =
∂nSc(νSI, x1)

∂x1
. (236)
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This is indicated by the black contours in Fig. 9, where the contours are plotted

at function values {9, 9.5, 10}. The maximum instability (black dashed line in Fig. 9)

is determined numerically and added for comparison with the introductory examples.

6 Conclusion

6.1 Summary

In Part I, a method is presented to locally diagonalize the strain-rate tensor of viscous

fluids in turbulent flows.

To symmetrize the tensor, a local polar decomposition approach is introduced,

generating a U(1) gauge field. For diagonalization, SO(3) rotating fields are used to

transform into the respective local eigensystem.

By applying the constitutive equation, a corresponding stress tensor field is derived

and by calculating its gradient, the local fields are identified and interpreted as velocity

field components of the Navier-Stokes equations (NS equations).

It is shown that the novel field equation contains all the information of the steady-

state NS equations up to a global similarity transformation, with the information

on the diffusive flow components included in the locally diagonalized part, while the

information on the nonlinear convective components is incorporated by the gauge fields.

The nonlinearity is further structured in the self-interaction terms of the SO(3) fields.

The U(1) field contains the compressibility effects.

In Part II this fundamental theory is developed to the point where a basic example can

be computed as a proof-of-concept. For this purpose, the field equation from Part I is

brought into a form in which the path integral formalism can be applied. In particular,

the step from the description as a steady flow to a scattering theory with covariant time

evolution using Wick rotation is performed and analyzed in detail.

In the course of the argument, the equation is considerably simplified for a two-

dimensional incompressible flow, which reduces the gauge fields to a single, abelian U(1)

field. For this situation, a first scattering theory is formulated.

Based on this, a model using the scattering of quasiparticles among each other to

mechanistically explain the formation of TS waves in the boundary flow over a flat plate

is presented. The quasiparticles are modeled as average air molecules, which either travel

primarily vortex-free (laminar particles), or are characterized by high inherent angular

momentum (elementary vortices). The inherent angular momentum is characterized by

a wavenumber. The mechanism of the model includes the following steps:

(i) Generation of elementary vortices upon impact on the leading edge of the plate.

(ii) Scattering of elementary vortices on laminar particles within the boundary layer,

thereby reducing the wavenumber of the elementary vortices during impact.

This reduction is more pronounced at high wavenumbers and is reduced at low

wavenumbers.
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(iii) Repeated impacts result in an accumulation of elementary vortices of certain

wavenumbers, which leads to superposition, amplification and emergence of

macroscopic vortices.

As a result, an analytical solution is given for the maximum amplified wavenumbers

and frequencies as well as for the transition point from laminar to turbulent flow. The

model is applied to two specific flow situations, and the corresponding numerical results

are calculated.

6.2 Discussion of the local gauge field approach

The goal of this manuscript is to formulate fluid mechanics as a local gauge field theory

and to show how this new perspective can be applied advantageously.

This goal is achieved: A local gauge field equation for fluids is derived from

elementary physical relations and it is shown that this equation contains the equivalent

information to the stationary Navier-Stokes equations in situations of perturbed

stationary flows and up to a global similarity transformation.

Furthermore, it is demonstrated how a scattering theory can be developed from

this gauge field equation and applied to a relevant problem in fluid mechanics. Thus,

a proof of concept is achieved for the application of scattering theories and the path

integral formalism in flow situations. Two fundamental advantages of the new approach

become apparent:

(i) The gauge fields partition and structure the complex information of a turbulent

flow pattern to a great extent. Convective and diffusive parts are separated, the

nonlinearity is structured by the self-interaction of the non-Abelian SO(3)-fields.

A variety of mathematical methods from Yang-Mills theory are available to treat

the arising terms.

(ii) The new approach offers advantages when it becomes impossible to follow the

path of individual fluid volumina along streamlines due to chaotic motion. The

approach through path integral formalism processes all information about all

possible trajectories and reaction pathways as well as their probability at the

same time. As a result, it directly provides a statistical evaluation of the flow’s

characteristics, and may produce analytical formulae and results that are otherwise

unattainable or are achievable by numerical calculation only.

Discussion of the dynamic aspects: The Wick rotation initially introduces a

relativistically covariant time evolution. This effectively gives the wave functions the

actual form of wave packets ψ0 ∝ Aei(ωt−k1x1) (see Eq. 139). They can thus be viewed

as local, dynamical wave-like perturbations, as used in traditional eN methods, allowing

the treatment of dynamical problems such as the emergence of TS waves and turbulence.

Through the solution mechanism as a path integral, the dynamic contributions

are subsequently integrated out and the solutions contain only stationary components.
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In this sense, the new approach extracts the stationary aspects of the flow, which are

obtained though statistical averaging over all possible paths.

Discussion of the solutions regarding ε̇C: To achieve a consistent treatment of the

phase field, a global transformation is added in Par. 2.2.3 to the strain-rate tensor to

become ε̇ → ε̇C = iσ2ε̇. As a result, a Dirac-like equation for the fluid wave function

ψα is derived and processed. However, for problems without phase dependency (e.g.

incompressible flows), it may be easier to solve the non-transformed Eq. 11 directly,

without modification of the strain-rate-tensor ε̇.

This equation has the principal form of a Lagrangian to the Euclidean Majorana

equation (see van Nieuwenhuizen & Waldron 1996) and can be developed accordingly

to a Majorana-based scattering theory (with the corresponding restrictions concerning

reality condition). The important point for this work is that the connection between

the two equations is well-known and well-studied (see, for example, Anastasiou 2020 or

the discussion in Phibert, JamalS & Abdukhakimov 2014). Thus, despite solving the

modified system with respect to ε̇C, the original strain-rate tensor can be constructed

from the obtained solutions if needed.

6.3 Discussion of the Tollmien-Schlichting model

While the derivation of the scattering theory for fluids is kept as general as possible,

a number of approximations and simplifications are introduced when modeling the

process of wave generation for the Tollmien-Schlichting examples (TS-model). These

approximations must be assessed and validated separately from the underlying theory.

In summary, the assumptions are:

• The flow is two-dimensional and incompressible.

• There is a disturbance which generates and distributes vortex particles (presented

assumption: Point disturbance by tip of plate; distribution by diffusion).

• Only contributions in first order perturbation theory are included.

• Only those scattering processes are considered which cause the largest momentum

transfer.

• The air/ fluid molecules can be approximated as cylindrical particles with averaged

size and spacing.

• Only scattering processes at the height of momentum thickness δ2 are considered.

• There is a lower limit for angular momentum transfer in the scattering process

(presented assumption: A rolling condition imposed by the velocity gradient must

be satisfied).

Within these assumptions, the TS-model provides a detailed step-by-step

mechanism for the emergence of turbulence on a microscopic basis.

Comparison with traditional methods (eN etc.) reveals some interesting aspects:
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• The model calculation is analytically feasible and much simpler than numerical

calculation methods involving fourth-order differential equations, which are used in

eN -approaches.

• In contrast to numerical results, the analytical solution makes it possible to further

investigate and possibly improve the understanding of influencing factors on the

generation of turbulence.

• Compared to eN -methods, calibration difficulties are omitted, which occur when

adjusting the computational method (van Ingen, 2008) or environmental conditions

(Reeh, 2014).

The correlation of the newly calculated results with the original examples is

agreeable. In summary, however, this initial, basic TS-model is probably too simplistic

for detailed quantitative analysis. Nonetheless, it does demonstrate qualitatively

interesting features – such as the characteristic “banana” shape of the instability zone

– and the basic feasibility and usefulness of a scattering theory for problems in fluid

mechanics, which is consistent with the primary goal of this article in the form of a

proof-of-concept.

6.4 Outlook

In this article, a basic theory is established and its general usefulness was demonstrated

in a simple situation. However, there are many areas which deserve to be investigated

further:

Comparison to experimental findings: The calculation has so far only been compared

to two theoretical calculations. A possible next step is to compare the model results with

actual measurements. On one hand, it can be clarified to what extent quantitatively

accurate results can be generated with the model. On the other hand, an investigation of

the proposed contributing factors outside Reynolds theory (such as the size and spacing

of the fluid molecules, possibly their shape) may also be interesting.

Then, the question whether the model can be used or adapted to other fluids and

situations should be investigated. In particular, flows in pipes are another possible

application.

Further development of the theory within fluid mechanics: The tool developed is not

restricted to TS waves, but can possibly be used to model further effects in the transition

to turbulent flow. In principle, three-dimensional flows as well as terms of higher order

including self-interaction should be considered, categorized and systematized.

As an exemplary idea, higher order interactions may limit the lifetime of vortices,

which can be used to form an analytical model for localized puffs in the transition to

turbulence. However, such concepts first require a formulation of the full, non-abelian

scattering theory including perturbations of higher order.
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Using the approach in different domains: The gauge field equation presented in this

manuscript can be applied virtually without change to elastic media. They obey the

same general mechanics as the Cauchy-momentum equations (Eq. 5 in Part I), but in

this case inserting an elastic constitutive equation (roughly σ ∝ ε), with ε denoting the

strain tensor. Mathematically this system is equivalent to a fluid, the only significant

difference lies in its physical interpretation.
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W. Tollmien, Über die Entstehung der Turbulenz. 1. Mitteilung. Nachrichten von der Gesellschaft der

Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1929, 21-44. [Link]

H. Schlichting, Zur Enstehung der Turbulenz bei der Plattenströmung. Nachrichten von der Gesellschaft
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