Willkommen zur Quantenwirbeltheorie

Poster 1 – Referenzen

Abstract & Abbildung 3

[1] van Ingen, J.L. (1990). Research on Laminar Separation Bubbles at Delft University of Technology. In: Kozlov V.V., Dovgal A.V. (eds) Separated Flows and Jets. IUTAM Symposium, Novosibirsk. doi:10.1007/978-3-642-84447-8_73. [Link]

Abbildung 2 (Blasius Instabilitätszone)

Experimentelle Arbeiten

[2] Klingmann, B., Boiko, A.W.K., Kozlov, V. & Alfreddson, P. (1993). Experiments on the Stability of Tollmien-Schlichting Waves. European Journal of Mechanics B: Fluids, 12, 493-514. [Link]

[3] Kachanov, Y.S., Kozlov, V.V. & Levchenko, V.Y. (1977).Nonlinear development of a wave in a boundary layer. Fluid Dyn 12, 383–390. doi:10.1007/BF01050568. [Link]

[4] Strazisar, A.J., Reshotko & E., Prahl, J.M. (1977). Experimental study of the stability of heated laminar boundary layers in water. Journal of Fluid Mechanics, 83(2):225-247. doi:10.1017/S0022112077001177. [Link]

[5] Schubauer, G.B. & Skramstad, H.K. (1948). Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate. Report NACA-TR-909. National Advisory Committee for Aeronautics (NACA). [Link]

Numerische Studien

[6] Bertolotti F.P., Herbert T. & Spalart P.R. (1992). Linear and nonlinear stability of the Blasius boundary layer. Journal of Fluid Mechanics, 242:441-474. doi:10.1017/S0022112092002453. [Link]

[7] Shen, S.F. (1954). Calculated Amplified Oscillations in the Plane Poiseuille and Blasius Flows. Journal of the Aeronautical Sciences 21:1, 62-64. doi:10.2514/8.2920. [Link]

Abbildung 4 (Recrit bei Falkner-Skan-Strömungen)

[8] Arnal, D. (1986). Diagrammes de stabilité des profils de couche limite auto-semblables en ecoulement bidimensionnel incompressible, sans et avec courant de Retour. Technical Report OA Nr. 34/5018, ONERA.

[9] Wazzan, A.R., Okamura, T.T. & Smith, A.M. (1968). Spatial and temporal stability charts for the Falkner–Skan boundary-layer profiles. Report AD0712198. McDonnell Douglas Astronautics Co.–HB, Huntington Beach, CA. [Link]

[10] Pretsch, J. (1941). The Stability of Two-Dimensional Laminar Flow with Pressure Drop and Pressure Rise. Jahrbuch der Deutschen Luftfahrtforschung, p. 58. [Link]

Grundlagenliteratur

Tollmien-Schlichting-Wellen

Historische Arbeiten

[a] Tollmien, W. (1929). Über die Entstehung der Turbulenz. 1. Mitteilung. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 21-44. [Link]

[b] Schlichting, H. (1933). Zur Entstehung der Turbulenz bei der Plattenströmung. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 181-208. [Link]

Einführende Literatur

[c] White, F. (1991). Viscous Fluid Flow. McGraw-Hill. ISBN 0-07-069712-4.

[d] Mack, L. M. (1984). Boundary-layer linear stability theory (AGARD Report No. 709, Part 3). Jet Propulsion Laboratory, California Institute of Technology.

[e] Panton, R. L. (2013). Incompressible flow (4th ed.). John Wiley & Sons. ISBN 978-1-118-01343-4.

[f] Schlichting, H. & Gersten, K. (2017). Boundary-Layer Theory. Springer. ISBN 978-3-662-52917-1, doi:10.1007/978-3-662-52919-5. [Link]

eN Methode

Historische Arbeiten

[g] Smith, A.M.O. & Gamberoni, N. (1956). Transition, Pressure Gradient and Stability Theory. Douglas Aircraft Company Report.

[h] van Ingen, J.L. (1956). A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region. University of Delft Report UTH-74. [Link]

Einführende Literatur

[i] van Ingen, J.L. (2008). The eN Method for Transition Prediction. Historical Review of Work at TU Delft. Paper presented at the 38th Fluid Dynamics Conference and Exhibit, Seattle, Washington. doi:10.2514/6.2008-3830. [Link]

[j] Arnal, D. & Casalis, G. (2000). Laminar-turbulent transition prediction in three-dimensional flows. Progress in Aerospace Sciences. 36. 173-191, doi:10.1016/S0376-0421(00)00002-6. [Link]

Lokale Eichfeldtheorien

Historische Arbeiten

[k] Yang, C.N. & Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 96, 191. doi:10.1103/PhysRev.96.191. [Link]

[l] Utiyama, R. (1956). Invariant theoretical interpretation of interaction. Physical Review, 101(5), 1597–1607. doi:10.1103/PhysRev.101.1597. [Link]

[m] ’t Hooft, G. & Veltman, M. (1972). Regularization and Renormalization of Gauge Fields. Nucl. Phys. B 44, 189-213. doi:10.1016/0550-3213(72)90279-9. [Link]

Einführende Literatur

[n] Peskin, M.E. & Schroeder, D.V. (1995). An Introduction To Quantum Field Theory. CRC Press. doi:10.1201/9780429503559. [Link]

[o] Burgess, C. & Moore, G. (2006). The Standard Model: A Primer. Cambridge University Press. doi:10.1017/CBO9780511819698. [Link]

[p] Iliopoulos, J. (2012). Introduction to the Standard Model of the Electro-Weak Interactions. CERN Summer School of Particle Physics, Angers, France. HAL-Id: hal-00827554. [Link]

Navier-Stokes-Gleichungen und Herleitung

Historische Arbeiten

[q] Navier, C.L.M.H. (1823). Mémoire sur les lois du Mouvement des Fluides. Mémoires de l’Académie Royale des Sciences de l’Institut de France, p. 389-440. [Link]

[r] Stokes, G.G. (1845). On the Theories of the Internal friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids. Trans. Cambridge Philos. Soc., 8, 287-319. [Link]

Einführende Literatur

[s] Acheson, D.J. (1990). Elementary Fluid Dynamics. Clarendon Press, Oxford. ISBN 9780198596790. [Link]

[t] Landau, L.D. & Lifshitz, E.M. (2013). Fluid Mechanics (2nd ed., Vol. 6). Pergamon. ISBN 0-08-033933-6.

Der Spannungstensor als klassisches Tensorfeld

Historische Arbeiten

[u] Cauchy, A.L. (1828). Sur les équations qui expriment les conditions d’équilibre, ou les lois du mouvement intérieur d’un corps solide, élastique, ou non élastique. Gallica-Math: Augustin-Louis Cauchy – Œuvres complètes, série 2, tome 8. [Link]

Einführende Literatur

[v] Truesdell, C. & Noll, W. (1965). The Non-Linear Field Theories of Mechanics. In S. Flügge (Ed.), Handbuch der Physik (Vol. III/3). Springer. doi:10.1007/978-3-642-46015-9_1. [Link]

Innere mechanische Energie

Einführende Literatur

[w] Landau, L.D., Pitaevskii, L.P., Kosevich, A.M. & Lifshitz, E.M. (1984). Theory of elasticity (3rd ed., Vol. 7). Butterworth-Heinemann. ISBN 0-7506-2633-X.

[x] Graf, G.M. (2000). Kontinuumsmechanik FS 2010. Institute for Theoretical Physics, ETH Zürich. [Link]

Diagonalisierung komplex symmetrischer Matrizen

Historische Arbeiten

[y] Autonne, L. (1915). Sur les matrices hypohermitiennes et sur les matrices unitaires. Ann. Univ. Lyon, 38: 1-77. [Link]

[z] Takagi, T. (1925). On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau. Jpn. J. Math., 1: 83-93. doi:10.4099/jjm1924.1.0_83. [Link]

Clifford Algebra und Pauli-Abbildung

Einführende Literatur

[aa] Gull, S., Lasenby, A. & Doran, C. (1993). Imaginary Numbers are not Real – the Geometric Algebra of Spacetime. Found. Phys. 23(9), 1175-1201. [Link]

[ab] Tisza, L. (1976). Applied geometric algebra. MIT Department of Physics. [Link]

Wick-Rotation

[ac] van Nieuwenhuizen, P. & Waldron, A. (1996). On Euclidean spinors and Wick rotations. Physics Letters B, 389(1), 29-36, doi:10.48550/arXiv.hep-th/9608174. [Link]

Vergleichsarbeiten und ähnliche Ansätze

Bisherige analytische Ansätze in der Stabilitätstheorie von Grenzschichtströmungen

[ad] Goldstein, M. E. (1983). Generation of Tollmien-Schlichting waves by free-stream disturbances at low Mach numbers (NASA-TM-83026). NASA Lewis Research Center. [Link]

[ae] Bodonyi, R. J. (1989). Interaction between Tollmien-Schlichting waves and free-stream disturbances in boundary-layer flows (NASA-CR-185847). NASA. [Link]

[af] Nijimbere, V. (2019). Asymptotic approximation of the eigenvalues and the eigenfunctions for the Orr-Sommerfeld equation on infinite intervals. Advances in Pure Mathematics, 9(12), 967. doi:10.4236/apm.2019.912049. [Link]

Eichfeldtheorien in der Fluidmechanik

Eichfeldtheorien in der Mechanik Newtonscher Fluide (NS-Gleichungen)

[ag] Wu, J., Ding, L., Lin, H. & Gao, Q. (2024). A Field Theory Framework of Incompressible Fluid Dynamics. arXiv:2410.18667 [physics.flu-dyn]. [Link]

[ah] Moulden, T.H. (2012). On gauge fields in fluid turbulence. WIT Transactions on Engineering Sciences, 74, 73-84, doi:10.2495/AFM120071. [Link]

[ai] Sulaiman, A. & Handoko, L.T. (2005). Lagrangian dynamics of the Navier-Stokes equation. arXiv:physics/0508092 [physics.flu-dyn]. [Link]

[aj] E, W. & Liu, J.-G. (2003). Gauge method for viscous incompressible flows. Comm. Math. Sci., Vol. 1, No. 2, 317–332, doi:10.4310/CMS.2003.v1.n2.a6. [Link]

Ergänzende Ansätze

[ak] Kambe, T. (2008). Variational formulation of ideal fluid flows according to gauge principle. Fluid Dyn. Res. 40 399. doi:10.1016/j.fluiddyn.2007.12.002. [Link]

[al] Wyld Jr., H.W. (1961). Formulation of the theory of turbulence in an incompressible fluid. Annals of Physics. 14, 143-165. doi:10.1016/0003-4916(61)90056-2. [Link]